
Institut Mines-Télécom

Fault Tolerance

Thomas Robert

Office : 4D44

thomas.robert@telecom-paris.fr

Site web

1

mailto:thomas.robert@telecom-paris.fr
https://moodle.r2.enst.fr/moodle/course/view.php?id=86

Institut Mines-Télécom

Risk incident and general
concepts

2

Institut Mines-Télécom

Motivation of this lecture

■ In the table below, you will find critical guideline about
the grading policy

■ This is an incident because it may have catastrophic
consequences…

3

Institut Mines-Télécom

Brainstorming : understanding the anatomy
of an incident

■ (easy) describe an incident for an automated train that
involve the software controlling the train

■ (bit more difficult) Describe me incidents for a market
place putting customers and clients in touch to sell
goods that involve the server code managing the search
and transactions between clients

4

Institut Mines-Télécom

Incident anatomy : an abstract concept

■ Incident = a state or event in a system + environment

■ Derived concepts (often included in incident desrciptio):

■ responsibility, root cause, condition of occurrence,
frequency of occurrence

■ Functional consequences, negative impact kind,
cost, liability

■ Problem managing incidents == A TRADE-OFF  

5

Institut Mines-Télécom

Dependability (software systems)

■ Purpose :

	 Obtain a grounded trust in the ability of a system to

carry out and complete its expected services given
identified use conditions

■ Consequences

• Need to know what the system is expected to do, and to define

«liabilities » between expectations and system components.

• Determine how how confident you want to be and how you will

share this confidence

• Détermine acceptable use conditions

6

Institut Mines-Télécom

Abstract risk handling strategies

■ Mitigate (reduce) the risk  
(changing use conditions or the system)

■ Delegate risk handling to a third party and consider the
incident under control  
(transfer the liability)

■ Accept the risk  
(the incident will remain as is but it is ok)

■ Reject the situation (the incident cannot be handled, the
system cannot be used nor produced - often appear later)

7

Institut Mines-Télécom

Motivations: Zero defect theory not realistic

■ In 1970’s : zero defect concept proposed as guideline
for human task forces, then reinterpreted as a goal

■ Principle :

■ Conformance to requirements (assume they are

correct)

■ Fault handling = prevention

■ « Zero defect » is the target during production

■ Define a penalty to internal fault activation

■ Criticism : defect = fault + responsibility + internal

8

Institut Mines-Télécom

And so what ?

■ Interaction faults and multiple conditions:

■ Dependable design => no single causes to

catastrophic failures

■ What if not used as expected ? (zero defect ignore

this point) … it depends (Therac 25 many causes but
if no quick operation, no data race => no failure)

■ What if not correctly identified ? (overseen incident,
Boeing 737 max)

■ Hardware can fail, user can misuse the system,
maintenance operation (software update) can go wrong
=> need to survive fault activation

9

Institut Mines-Télécom

Identify the scope : system, structure and
dynamics

■ System : description unit that help distinguish the
object of the analysis from its context (environnement)

■ System structure : the elements that are assumed to

be fixed for once (usually the structure should not
change)

■ System state et behavior : the information that can
change during normal behavior of the system and
that help define its expected behavior

■ System interface : part of the system state shared
with the environnement (shared liabilities on the
interface)

10

Institut Mines-Télécom

Automate cart system

Small Embedded system case study

■ A complete system is
heterogenous in terms of
components and level of
abstractions (HW/SW)

■ Failure cause difficult to bind to
a single cause => complex event

11

Regulator

Sensor Motor

PowerPCC

RTEMS

T1 T2

Institut Mines-Télécom

Means to Mitigate or decide to accept risk

■ Prevention : prevent incident occurence eliminating
their causes to occur (event), or to belong to the system
or the environment (structure)

■ Elimination : detect cause under the form of structural
element and remove it

■ Fault Tolerance : tolerate faute consequence but prevent
the risk to be unbearable

■ Assessment : determine entailed risk for given fault
assumptions and a given system design.

12

Institut Mines-Télécom

Means to Mitigate or decide to accept risk

■ Prevention : prevent incident occurence eliminating
their causes to occur (event), or to belong to the system
or the environment (structure)

■ Elimination : detect cause under the form of structural
element and remove it

■ Fault Tolerance : tolerate faute consequence but prevent
the risk to be unbearable

■ Assessment : determine entailed risk for given fault
assumptions and a given system design.

13

Institut Mines-Télécom

Means to Mitigate or decide to accept risk

■ Prevention : prevent incident occurence eliminating
their causes to occur (event), or to belong to the system
or the environment (structure)

■ Elimination : detect cause under the form of structural
element and remove it

■ Fault Tolerance : tolerate faute consequence but prevent
the risk to be unbearable

■ Assessment : determine entailed risk for given fault
assumptions and a given system design.

14

Institut Mines-Télécom

Means to Mitigate or decide to accept risk

■ Prevention : prevent incident occurence eliminating
their causes to occur (event), or to belong to the system
or the environment (structure)

■ Elimination : detect cause under the form of structural
element and remove it

■ Fault Tolerance : tolerate faute consequence but prevent
the risk to be unbearable

■ Assessment : determine entailed risk for given fault
assumption and a given system design.

15

Institut Mines-Télécom

Fault Tolerance  
Definition, challenges and
approaches

16

Institut Mines-Télécom

Definition I

■ Fault Tolerance : methods to deploys mechanisms that
guarantees that failure impact can be mastered

■ Limiting failure occurrence can be mitigated at run-time

1. Detecting / controlling fault activation

2. Detecting errors / preventing failed state

17

incident

Failed
state

Environn
emnt 
state

Error Fault

Activation Failure

1 2

Institut Mines-Télécom

■ Fault Tolerance : methods to deploys mechanisms that
guarantees that failure impact can be mastered

■ Controlling failure impact

1. Design failure signaling / recovery (manage)

2. Steer system to master and select failure modes

Definition II

18

incident

FS1

ES1
Error

Force  
Failure

Mode

incident

FS2

ES3

incident

FS1

ES2

Institut Mines-Télécom

Generic vs dedicated / reuse vs efficiency

■ Error and failed state = specific to application

■ Reliability / availability given failed state definition = non
specific

■ Generic solution for reliability / availability / integrity

■ Dedicated solution required for safety (need to identify
safe state first).

19

Institut Mines-Télécom

Challenges with Faults

■ Faults can be either structural feature or behavior

■ Structural feature bound to the system

■ Poor code

■ Poor hardware

■ Inherent undesired behaviors (bit flips in memory)

■ Behavior bound to the environnement

■ Wrong interaction on the system interface

■ Wrong context of use (the system entail an

unwanted state in the env.)

■ Unknown interactions …. (hidden interface)

■ Pb : how to inhibit a structural feature ? What is the best
strategy w.r.t unwanted behaviors ?

20

Institut Mines-Télécom

Key idea : understand the full dynamics  
Root cause -(Activation/error/failure)+- Failed state

■ Controlling failure transition require to understand

■ When activation / error can be detected and where

■ How to prevent transition to failed state

■ Can we pause the dynamics ?

■ Can we determine the lower bound on time to

failure ?

■ Can we revert state transitions ?

■ System complexity make it difficult

■ More than one thread of state update

■ More than one abstraction level

■ Hardware/ software synchronous dynamics entails

software error => hardware error and the way around.

21

Institut Mines-Télécom

Architectural description and error
confinement

■ Assumption : system interface, scope, expected
behavior and use conditions defined

■ A system provide Error Confinement

■ Identified failure modes that can be detected or are

at least documented

■ Capabilities to detect errors before failure, and

(optional) can mitigate them (no failure)

■ Fault assumption defining the use condition of this

error confinement (≠ faults => confidence lost)

■ Main objective : detects / signal / mitigate errors.

22

Institut Mines-Télécom

Course content

■ Error confinement at the scale of the Hardware (the data
storage case)

■ Error confinement at the scale of the instruction
sequence (programming language support and state of
the art in API)

■ Error confinement at the scale of the sequence 2 design
pattern for sequential recovery, 1 pattern for
diversification

■ Next course content, replication strategies, and link to
consensus algorithm + fault tolerance in real time
systems.

23

Institut Mines-Télécom

Special case of storage
failures - to get the intuition …

24

Institut Mines-Télécom

Error and failure in Hardware

■ Failures = transition / error = state

■ Control flow vs Data flow issues

■ Control flow : undesired instruction executed

■ Data Flow : accessed data with wrong value (not

expected)

■ Why Von Neumann architecture is so bad for fault

tolerance ?

■ Key idea : guarantee data integrity = top priority

■ Fault model objective

■ Find realistic fault activation / impact,

■ Find realistic bounds to

25

Institut Mines-Télécom

Fault model, activation and confinement

■ One storage unit + access function (store / read)

■ Storage = fixed size array of bits

■ Block model = partitioned in subintervals of fixed size

(same for all).

■ Objective : provide fault confinement on read access for

fault that modify some of stored bits.

■ Pb 1: how to detect altered bits

■ Pb 2: how to recover from altered bits

■ Coding theory provide a solution

■ See stored value as information quantity and not just

the value

■ Work on the information encoding

26

Institut Mines-Télécom

Principle of the detection

■ Information : store K different values (K=2^P)

■ Optimal encoding (number if bits) =  

numbering values from 0 to 2^P-1 and bind it to the
base 2 encoding of this number

■ PB: modify 1 bit encode a different value

■ Idea: modify r bits does not represent a valid encoding

of a value

■ How : add extra information

27

Encoding Function Enc : Val —> 2^n (n > log(|Val|)/log (2))

Decoding function Dec : Enc(Val)—> Val

Institut Mines-Télécom

Fault model, extension of Dec for detection/
correction

■ Dec is not defined on 2^n a priori

■ Consider y’ not in Enc(Val)

■ Fault activation = add ∆ to y in Env(Val), y is said faulted

■ Error detection consist in extending Dec in Dec’ so that

■ If y in Enc(Val) it returns x such that y= Enc(x)

■ Otherwise return « error »

■ The output domain is extended with the error case.

■ Error correction under the additive assumption

■ For every element y’ in 2^P there exist an element of

Env(Val) that is considered as the most likely faulted code
word leading to y’

■ Error correction returns x s.t. y= Enc(x) for any value y+∆
give ∆ is the fault activation logic

28

Institut Mines-Télécom

Hamming distance : measure the space
between code words

■ Hamming distance, Hdist, for two vectors from {0,1}^n  
 
Hdist (v1,v2) =Card({i | v1[i]≠v2[i] })

■ Hamming weight of W(v) = Hdist (v,0) = number of non 0
element

■ Hamming Ball of size r around v ={ v’| W (v xor v’)≤r}

■ Note that alternative notation of v xor v’ is v-v’

29

Institut Mines-Télécom

Principle of detection / correction based on
Hamming distance, and surrounding ball

■ Let assume we want to tolerate r errors in a block of n
bits

■ At decoding time : assume at most r bits have been
modified from an element of Enc(Val) to obtain y’

■ When does detection is possible ?  
For all y, correct encoding of a value in Val, ensure that
ball(y,r) does contain a single element of Enc(Val)

■ When does correction is possible ? 
For all element v in 2^n, ensure there is a single element
of Enc(Val) in ball(v,r)  
Alternate criteria : For all y, correct encoding of a value
in Val, ensure that ball(y,2r) only contain y from Enc(Val)

30

Institut Mines-Télécom

Hamming code (4,7)

■ Example on the whiteboard

31

Institut Mines-Télécom

Software and Error
confinement strategies

32

Institut Mines-Télécom

Software failure / fault assumptions

■ System:

■ Structure=sequence of instruction

■ Interface=set of variables (typed or not)

■ Expected behavior=read interface state, compute, update

■ In the interface : application data + control data (ensure execution

continuity - e.g. return conditions)

■ Failure modes :

■ No W (system seems absent)

■ Bad W (wrong value or bad timing …) on data flow

■ Bad W on control flow

■ Faults :

■ Code leading to data error or control flow error (e.g. may entail no W)

■ Hardware / execution platform issues

■ Interaction issues

33

Institut Mines-Télécom

What is the scope / interface of a sequential
code

■ State = 2 parts

■ Data flow (memory, variables …)

■ Control flow : register value, return address, call

stack structure….

■ Error properties :

■ Error in data bound to data flow = can alter the
functional state and propagate as interaction faults

■ Error in data bound to control flow = can change le
sequence of actions executed (and eventually the
functional state but can propagate to the execution
platform)

34

Institut Mines-Télécom

Confinement at Block level (Exceptions)

■ {

■ Statement1 —> data flow error e1 or e2 (don’t know)

■ Statement2 —> call to f => may detect data flow error e1

■ Statement3 —> call to g => may detect data flow error e2

■ }

■ Handling code e1: { }

■ Handling code e2: { }

■ Exception principle : intercept error at the beginning of step
2 /3 as interaction fault + branch to recovery / signaling code

■ Provide naming / typing and routing features

35

Institut Mines-Télécom

Confinement at Block level (Exceptions)

■ Requirement: need branching capabilities in case of error detection,
integrated to languages

■ Design pattern : try / throw / catch model

■ Given a block of sequential code, N types of error can be

detected

■ Detection entail branching (throw) to detection mitigation

(catch)

■ Compatible with block nesting => capability to propagation error

detection to upper level

■ Criticism :

■ Do not encourage to manage interaction faults because seems
already done …

■ Provide good localisation of fault activation

■ Ease interception of failure transition and resource management

36

Institut Mines-Télécom

Case 1 : functions

■ Observation : Beginning and end of sequence well
identified (can insert code to prevent propagation of
errors from/to the interface

■ Internal state : local variables + locally allocated variable
on the heap

■ Handling interaction faults consequences :

■ Stateless — Filter input parameter value (use

predicates)

■ Stateful — use static local variables to keep track of

issues

■ Failure signaling : use globale variable (bad) or the

return value (best practice if no other support)

37

Institut Mines-Télécom

Confinement at function scope (C example)

How to make confinement afterwards.

■ Specificities :

■ parameters can be adresses to share memory (so input /

output parameters)

■ Return value of limited type

■ Design pattern : function wrapping (in C)

■ Given retType f(Tp1, …, Tpn) a typed function

■ Build FMType g(Tp1, …, Tpn, Tout)

■ Call f from g but implement error confinement

■ Filter interaction faults on input parameters

■ Filter failure on output with

■ Assertions

■ Comparison to oracles

■ Manage ressource if error mitigation needed

38

Institut Mines-Télécom

Error Detection / recovery generic templates

■ Forward vs Backward recovery

■ Pb : how to mitigate errors

39

Recovery

RecoveryDetection

Detection

Expected behavior Expected behavior

Safe state

Institut Mines-Télécom

B

D C

ERet 1

Ret 2 Ret 3

A

Illustrating backward recovery

Modèle de présentation Télécom Paris40 36

Detected error

Current execution

State checkpointing (save)Program control
graph

Recovery 
action B

D C

ERet 1

Ret 2 Ret 3

A

Institut Mines-Télécom

Forward recovery detailed

■ Pb what is the solution for
systematic activation ?

■ Additional assumption :

■ 2 level of services « optimal »

and « safe but degraded »

■ Blue graph = optimal

■ Yellow graph = safe but

degraded

41

B

D C

ERet s1

Ret s2 Ret s3

A

B

D C

ERet s1

Ret s2 Ret s3

A

B

D C

ERet s1

Ret s2 Ret s3

A

B

D C

ERet s1

Ret s2 Ret s3

A

Institut Mines-Télécom

Execution logic of forward recovery

B

C

E

A

D

Ret s1

■ Upon detection

■ Rerouting execution to D state

■ Continue from D

independently from the past

■ Example

■ Text editor

■ Network connectivity

■ … your turn

Institut Mines-Télécom

How to cope with systematic activation :
Diversification (code)

■ BWR recovery cannot cope with wrong pointer
initialization for instance ….

■ Idea : use different implementations of the same
function

■ IT IS THE DEFINITION OF DIVERSIFICATION

43

Institut Mines-Télécom

Recovery Blocks the main idea

44

■ CP = capture point or check point

Entry point 
function call

Or message queue

CP

Alternative1

Alternative2

AlternativeN

Intercept+tes

Institut Mines-Télécom

Possible execution scenarii

45

CP Alternatiev1 TestOK

CP Alternatiev1 TestFail RestoreCP Alternatiev2 TestOK

■ Without Failure of any alternative

■ With an alternative implementation failing

■ Cost model for the approach

■ Time : proportional to alternative Worst case

execution time and number of failures

■ Memory : CP storage is not necessarily cheap

Institut Mines-Télécom

Replica and failure modes

46

Institut Mines-Télécom

The concept of replica

■ Idea : use of N version programming + distinct hardware
to support execution

■ Consequences : confinement at the scope of a host, or a
subnet.

■ Given a functionality to deploy, a replica =

■ Software

■ Hardware

■ Integration (code or hardware)

■ Fault tolerance dealt with multiple replica with different
failure modes (e.g. replica failures are the system error)

47

Institut Mines-Télécom

Most popular failure modes

■ 3 templates that help designing efficient strategy and
cover many cases or tradeoffs

■ Crash (a host either produce correct output or stop

emitting any data, permanently up to its repair)

■ Omission and commission : in a sequence of

expected output, some are missing or some are
duplicated

■ Byzantine failure : a host can exhibit an arbitrary
behavior (covering any possible behavior — worst
case)

■ Can consider other cases but design patterns mostly for
those three cases.

48

Institut Mines-Télécom

Passive replication

49

Institut Mines-Télécom

Passive Replication principle

■ Problem to be solved :

■ Define a mechanism to resist crashes

■ Optimize the used CPU

■ Scale to an arbitrary upper bound to crashes count

on a lifetime

■ Assumption : network does not fail, do not alter

message integrity nor availability

50

Institut Mines-Télécom

Passive replication behavior

■ Idea : revisit backward recovery

■ Replica equipped with integration code to capture

internal state

■ Additional (leader/follower) state

■ In leader mode : perform computation, produce
output, perform state capture, and broadcast it

■ In follower mode : wait for state update + can decide
whether leader failed & elect new leader

■ Failure assumption covered : crash of #replica - 1.

51

Institut Mines-Télécom

HB

■ Without Failures

■ With a crash

3 replica execution scenarii

52

P’1
B’1

req rep

req

R1
R2
R3

State Capture
Processing

Recovery state storage

Termination

R1
R2
R3

Crash

Follower selection

b

repa b Repair?

52

Institut Mines-Télécom

Think it twice

■ Small brainstorming :

■ Is it tractable for a real time task ? Why ?

■ In which condition does it save CPU, is it network

friendly? Why ?

■ What does happen if we change the network

behavior assumption (recall : perfect network)

■ What if it can loose sometime messages ? (But

not too often) ?

■ What if it can alter the content of messages (not

too often too) ?

53

Institut Mines-Télécom

Active Replication 
The other extreme case

54

Institut Mines-Télécom

Active Replication principle

■ Problem to be solved :

■ Define a mechanism to resist Byzantine fault to

cover network as well as host failures

■ Optimize latency for recovery

■ Scale to an arbitrary upper bound to crashes count

on a lifetime

■ Assumption : possible to design integration code that

does not fail if the host has not failed.

55

Institut Mines-Télécom

Active replication behavior

■ Idea : revisit recovery block with parallel execution

■ Architecture made of N replica plus 1 node in charge of

input output (can be one of the replicas but not the usual
assumption)

■ Assumption : the input output node cannot fail
(trustworthy)

■ Replica communicate with the input output node.

■ Input/output node behavior

■ When a processing start, send input to replicas, wait for
reply

■ Upon reception of a sufficient number of reply, decide
what should be produced (vote, average …)

■ Failure assumption covered : 2 #Byzantines < #replicas - 1.

56

Institut Mines-Télécom

3 replica execution scenarii

• No failures

• 1 failure

C
R1
R2
R3

req repreq

C
R1
R2
R3

req

rep

rep + err

Input broadcast
Processing
Output validation

Institut Mines-Télécom

Think it twice

■ Propose for three replicas with bounded correct
execution time a voting mechanism that guarantee
bounded time reply

■ Propose a state in which the active replication for 3
replicas with such mechanisms can signal an error but
cannot correct it (nor produce wrong output).

■ Comment about the « voter » in a case failure cannot
recover without manual recovery (assume more than 3
replicas).

58

Institut Mines-Télécom

3 replica execution scenarii

■ Without

■ With

59

C
R1
R2
R3

req reprepreq

C
R1
R2
R3

req rep + err

timeout

Réplication de la requête
Traitement de la requête
Construction de la réponse

Institut Mines-Télécom

Ressource Pool model

■ Idea: could deploy this principle on clouds or on
operating systems with processes

■ Replica can be spawned on demand

■ Pro : offer tuning capabilities on dependability

■ Cons : consume ressources

■ Solution : define pools of ressources with bounds

■ Create/destroy replicas

■ Pool elements : in and out need more

synchronization to decide who participate

■ Motivation the need for consensus algorithms

60

