
STREC - TD-STATIC Assignment

Getting Started With While

You can download the source files for the exercise from the course website:

https://strec.wp.mines-telecom.fr

Once you downloaded the While source package, you should have the following files in your
working directory:

./src/WhileRun.cc

./src/WhileInterpreter.cc

./src/WhileAnalysis.cc

./src/While.g4

./src/WhileDeadCodeAnalysis.cc

./src/WhileCFG.cc

./src/WhileConstantRegisterAnalysis.cc

./src/WhileInterproceduralPipelineAnalysis.cc

./CMakeLists.txt

./include/WhileInterpreter.h

./include/WhileAnalysis.h

./include/WhileColor.h

./include/WhileLang.h

./include/WhileCFG.h

./test/sort.whl

./test/swap.whl

./test/fib.whl

./test/string.whl

./test/min.whl

./test/max.whl

./COPYING

Make a new directory build and execute the following commands in order to build the code:

cmake ..
make -j12

This should build two executable files while-analysis and while-run. The latter is an
interpreter of the language, which allows you to execute While programs. For instance, the
following command will execute a simple insertion sort on a table of 5 integers:

./while-run ../test/sort.whl

You objective is to study simple analyses which are part of the program while-analysis.

1

https://strec.wp.mines-telecom.fr


1 Dead Code Analysis (20mn minutes)

Aims: Understand the operation of a static analysis on simple programs.

A static analysis in the While framework is always derived from the class WhileDataFlowAnalysis,
which is defined in the file ./include/WhileAnalysis.h. Here is an code excerpt of the
relevant member functions:

template<typename D>
struct WhileDataFlowAnalysis : public WhileAnalysisInterface<D>
{

// Functions to override inherited from WhileAnalysisInterface:
virtual D transfer(const WhileInstr &i, const D input) = 0;
virtual D join(std::list<D> inputs) = 0;

virtual std::ostream &dump_first(std::ostream &s, const D &value) = 0;
virtual std::ostream &dump_pre(std::ostream &s, const D &value) = 0;
virtual std::ostream &dump_post(std::ostream &s, const D &value) = 0;

};

The abstract domain is modeled as a template parameter D, which can be defined freely. An
analysis implementation in addition has to provide code for the member function transfer –
modeling the transfer function of the analysis – and the member function join – modeling the
join operator seen in the lecture.

The various dump functions also have to be implemented, they are used to display the analysis
information alongside the analyzed program.

• Open the files ./include/WhileAnalysis.h and ./src/WhileDeadCodeAnalysis.cc
and have a look at the code that defines a Dead Code Analysis implemented by the class
WhileDeadCode.

• The abstract domain of this analysis is a simple enum:

enum WhileReachability
{

REACHABLE,
DEAD

};

Code that is marked with REACHABLE might be executed, while code that is marked with
DEAD can never be executed.

• Run the analysis on the example program ./test/max.whl as follows:

./while-analysis WDCA ../test/max.whl

• The analysis prints the control-flow graph (CFG) of the analyzed program. Code high-
lighted in green is REACHABLE, while code in red is DEAD. For the considered example
only the last instruction, a WRETURN instruction is dead.

• Have a look at the implementation of the join function, shown below:

WhileReachability join(std::list<WhileReachability> inputs) override
{

2



if (inputs.empty())
return REACHABLE;

for(WhileReachability r : inputs)
{

if (r == REACHABLE)
return REACHABLE;

}

return DEAD;
}

The function takes a list of WhileReachability values as input, each corresponding to
the analysis information at the end of a predecessor basic block. If the end of any of the
predecessors is reachable, the code of the current basic block is considered reachable
too. In addition a corner case is considered, all basic blocks that do not have any prede-
cessors are considered reachable as well. Basic blocks where the analysis information
for all predecessors is DEAD are in-turn considered dead.

• Finally, lets have a look at the transfer function:

WhileReachability transfer(const WhileInstr &i, const WhileReachability input) override
{

WhileReachability result = input;
switch(i.Opc)
{

case WBRANCH:
case WRETURN:

// code after those instructions is definitely dead
result = DEAD;
break;

case WCALL:
case WLOAD:
case WSTORE:
case WPLUS:
case WMINUS:
case WMULT:
case WDIV:
case WEQUAL:
case WUNEQUAL:
case WLESS:
case WLESSEQUAL:
case WBRANCHZ:

// do not render code dead
break;

};

return result;
}

The function contains a switch covering all possible instruction types of the While
program representation. Only two kinds of instructions have an actual impact on the
analysis: WBRANCH and WRETURN instructions. Any instruction that immediately follows
one of these two kinds of instructions is definitely not reachable anymore by any other

3



instruction. For all other instruction kinds the analysis simply preserves the input value,
i.e., input is copied into result.

2 Constant Analysis (90mn minutes)

Aims: Modify the code of a partial static analysis on simple programs.

You task is now to complete the code of a Constant Value Analysis, as presented in the lecture.
An initial skeleton of the analysis is provided in the file
./src/WhileConstantRegisterAnalysis.cc.

• Lets first have a look at the analysis domain, which is a bit more complex than before:

enum WhileConstantKind
{

TOP,
BOTTOM,
CONSTANT

};

struct WhileConstantValue
{

WhileConstantKind Kind;
int Value;

WhileConstantValue() : Kind(TOP), Value(0)
{
}

WhileConstantValue(int value) : Kind(CONSTANT), Value(value)
{
}

WhileConstantValue(WhileConstantKind kind) : Kind(kind), Value(0)
{
}

};

typedef std::map<int, WhileConstantValue> WhileConstantDomain;

The abstract domain is a map (last line), which associates a register of the program rep-
resentation (represented by an integer number) with a WhileConstantValue. Con-
stant values may be in three distinct states, indicated by the member Kind of type
WhileConstantKind:

1. TOP:
This state indicates that no decision has been made yet, i.e., the analysis has not
determined yet whether the register’s value is constant.

2. BOTTOM:
This state indicates that the analysis found a contradiction, i.e., the register may
contain different values.

4



3. CONSTANT:
This state indicates that the analysis was able to determine that the register always
holds the same constant value. The value of the constant is stored in the member
variable Value.

• Implement the join function combining two values of type WhileConstantValue. The
current implementation of the function always returns BOTTOM and is shown below:

static WhileConstantValue join(const WhileConstantValue &a,
const WhileConstantValue &b)

{
// TODO: Implement the join function (replacing BOTTOM).
return BOTTOM;

}

Your code should return a more sensible WhileConstantValue considering the rules
explained in the lecture:

1. If the two input values represent the same constant, return that constant.

2. If one of the two input values is TOP, return the respective other value.

3. In all other cases return BOTTOM.

Compare your code with the explanations in the lecture.

• Implement the transfer function for which only the prototype is shown here for brevity:

WhileConstantDomain transfer(const WhileInstr &instr,
const WhileConstantDomain input) override;

This function takes a While instruction and a WhileConstantDomain, i.e., a map, as
input. The function is then supposed to model the effect of the instruction on the abstract
value.

The code already comes with two helper functions readDataOperand and
updateRegisterOperand. The former obtains the abstract value associated with a
register operand of an instruction, while the latter replaced the abstract value associated
with a register operand by a new value. The use of these two functions is illustrated for
some instructions in the code.

You task is now the complete the code in order to obtain a working analysis:

– Lets focus first on the WCALL instruction. The current code calls
updateRegisterOperand and always provides the value 0. This clearly is not
right. Correct the code such that some reasonable value is used instead.
Note that the analysis is intra-procedural, which means that you don’t have any
information on what other functions are doing.

– Next complete the code of the WLOAD instruction. You have to add a call to
updateRegisterOperand. Adapt the solution from the WCALL instruction. How-
ever, contrary to the WCALL instruction this kind of instructions has its destination
register operand at another index position (idx argument) as illustrated by the com-
ments in the code.

– Finally implement the transfer function for all binary operators (WPLUS through
WLESSEQUAL). Use the values obtained for the two input operands using
readDataOperand and compute the result value. Then use

5



updateRegisterOperand in order to update the abstract value of the destina-
tion register.
Also handle the case when one of the two operands is not a constant. Use
updateRegisterOperand in order to update the abstract value of the destina-
tion register in this case.

• At this point you should have a working constant analysis. You can try it by running:

/while-analysis WCRA ../test/max.whl

Test your code with your own While code and make sure that it works correctly.

• Now extend the analysis to handle more cases, e.g., by exploiting basic mathematical
properties of certain operations such as multiplication.

6


	Dead Code Analysis (20mn minutes)
	Constant Analysis (90mn minutes)

