
Real-Time Scheduling
for Mono-Processor Systems

Laurent Pautet
strec.wp.imt.fr

pautet.wp.imt.fr/jobs
Laurent.Pautet@enst.fr

Version 3.2

mailto:Laurent.Pautet@enst.fr

Real-Time Embedded Systems
Examples

Laurent Pautet 2

?
What do they have in common ?

Nuclear PlantAutomated SubwayCellphoneAirplane

Laurent Pautet

Embedded Systems
Definition and Requirements

An embedded system is a special-purpose system
which software, hardware, mechanical, … components

are encapsulated in the device it controls

As opposed to general-purpose systems,
they have specific properties such as

low consumption, small size and weight, limited resources …

A cruise control, a washing machine, factory robot, …

Laurent Pautet

Real-Time Systems
Definition and Requirements

A real-time system consists in one or more sub-systems
that have to react under specified time requirements

to stimuli produced by the environment

A response after a deadline is invalid
Even if the response is logically correct

A cruise control, a washing machine, factory robot,
a nuclear plant, an air traffic control, trading center, …

Most real-time systems are embedded systems

Laurent Pautet

Timing constraints

 The application must have a precise
and consistent image of the system
in its environment at anytime

 The goal of real-time systems is to
minimize the difference between
the images of the system in reality
and in its application (|R(t)-A(t)|<ε)

 To update the image in the
application, it reads in particular
sensors periodically. The period
being a temporal granularity during
which the measures evolve
significantly)

Image of the system
in the real environment

Image of the system
in the application

Polling
Events

Actions

R(t) A(t)

Laurent Pautet

Non Fonctional Properties

These systems have to be predictible

 Reactivity and temporal consistency

 Define temporal interval during which data is valid
 Define time granularity (ship sec, rail msec, airplane usec)
 Guarantee response time boundaries (known in advance)

 Reliability and Availability
 Guarantee the correctness of the computed data values
 Enforce system availability in presence of hostile conditions

(fault tolerance, malicious behavior …)

Non-Fonctional Properties -> temporal & structural

From requirements to technical solutions

 Requirements
 Reactivity & temporal consistency
 Reliability & Availability

 Solutions
 Architectures and frameworks to help the design

(Kernels, RT buses and networks, …)
 Models and methods to enforce predictibility

(RT scheduling, Fault tolerance, …)
 Suitable programming languages

 (C-Misra, Java-RT, Standard POSIX 1003.1c, Ada, …)
 Tools to integrate modeling, analysis and synthesis

(AADL, Marte, verification, simulation, generation, testing)

Laurent Pautet

Notations

 Parameters of task ti
 Ci : Worst Case Execution Time (WCET) of task ti
 Ai : Arrival time of task ti

 Task must not arrive before Ai

 Ai may be different from 0 (dependency)
 Ti : Period of task ti
 Di : Deadline of task ti

 Task must not complete after Di

 Ai + Ci < Di however …
 Di ≤ Ti is not mandatory (constrained deadline)

 Ui = Ci / Ti = processor utilisation of task ti
 Operators

 Ceiling éxù (least integer greater than or equal to x)
 Floorëxû (greatest integer less than or equal to x

Laurent Pautet

Worst Case Execution Time evaluation

Laurent Pautet

Laurent Pautet

Hard Real-Time Task

Sa
tis

fa
ct

io
n

Arrival Deadline

100%

-100%
Period

Ai Di Ti time

Ci

WCET

Laurent Pautet

Soft Real-Time Task
(Different from Best Effort Task that has No Deadline)

Sa
tis

fa
ct

io
n

Arrival Deadline

100%

-100%
Period

Ai Di

Ti time

Ci

WCET

Laurent Pautet

Hard real-time vs soft real-time tasks

 For a hard real-time task
 Deadlines must always be fulfilled
 WCET must never be overrun (over-dimension)
 Reduce inaccuracy from non-determinism

 Pre-allocation (no dynamic allocation), …
 Non-predictible cache behavior, …

 For a soft real-time task
 Missing deadlines can be tolerated:

 For a given percentage of times
 For a given number of times
 For a given frequency

 And result in a degraded execution mode
 Reuse previous job results for instance

Laurent Pautet

Sub-systems of real-time systems

A real-time system is composed of several sub-systems
with different real-time properties

Some of these sub-systems may be non real-time, soft
real-time or hard real-time sub-systems

 Hard real-time tasks must fulfill their deadlines.
 Soft real-time tasks may fail to fulfill their deadlines.

If so, they may execute in a degraded mode.
 Other tasks execute in best-effort mode.

Laurent Pautet

Real-Time Schedulers

 Allocate (CPU) resources to guarantee safety
(timing) properties

 In normal mode, respect the time constraints
of all tasks

 Otherwise, limit the effects of time overflows
and ensure compliance with the constraints
of the most critical tasks

In the following, it will be ensured that the time dedicated to the
scheduling algorithm and that of context switch are negligible

which implies a low complexity and an effective implementation

Definitions
Execution Model

 Dependent or independent tasks
 Independent tasks sharing only the processor
 Dependent tasks with shared resources or linked by

precedence constraints
 Synchronous tasks have the same activation time (0)
 Periodic task with implicit deadline means periodic

task with deadline equals to period

 Task job : instanciation of a task during period
 Worst Case Execution Time : worst computation time
 Response time : time to complete a job while other

jobs are also running on the same processor

Laurent Pautet

Definitions

 Preemptive and non-preemptive scheduling
 A preemptive scheduler can interrupt a task for a higher

priority task when a non-preemptive scheduler executes the
task until it completes

 Offline or online scheduling
 A scheduler decides offline or online when and which task to

execute
 Optimal scheduling

 Algorithm that produces a schedule for any set of
schedulable tasks (if an algorithm does, it does too)

 Scheduling test
 A necessary and / or sufficient condition for an algorithm to

satisfy the temporal constraints of a set of tasks

Laurent Pautet

Overview of algorithms

 Scheduling periodic tasks
 Non-preemptive table-based scheduling
 Preemptive scheduling with static priorities

 Rate and Deadline Monotonic Scheduling
 Preemptive scheduling with dynamic priorities

 Earliest Deadline First and Least Laxity First

 Scheduling aperiodic tasks
 Background, polling, deferred & sporadic servers

 Sharing resources
 Priority Inheritance, Priority Ceiling & Highest

Locker
Laurent Pautet

Proving schedulability
using a scheduling algorithm

 To prove schedulability/feasibility of a task set
 Execute the algorithm over a feasibility interval
 Compute a (necessary - sufficient) scheduling test
 Compute response time & check against deadlines

 Feasibility interval : minimum interval needed to
verify the schedulability of a system
 For independent synchronous periodic tasks :
∀i: Di ≤ Ti with a fixed priority scheduling
[0, LCM (∀i: Ti)] (LCM or hyper-period)

 For independent asynchronous periodic tasks
∀i: Di ≤ Ti with a fixed priority scheduling
[0, 2 * LCM (∀i: Ti) + max (∀i: Ai)]

Laurent Pautet

Table Driven Scheduling
Principles

 Hypotheses
 Periodic tasks

 Principles
 Major cycle = LCM of the task periods
 Minor cycle = non-preemptible block
 The minor cycle divides the major cycle
 A cyclic scheduler loops on the major cycle by

executing the sequence of minor cycles
 The minor cycle provides a control point to check

the respect of the timing constraints

Laurent Pautet

Table Driven Scheduling
Example

Laurent Pautet

Period Deadline WCET Usage
t1 10 10 2 0,200
t2 15 15 4 0.267
t3 6 6 2 0.333

t1

t2

t3

Minor Cycle

Major Cycle

Laurent Pautet

Table Driven Scheduling
Advantages and Disadvantages

 Advantages
 Effective implementation
 No need for mutual exclusion between tasks

 Disadvantages
 Not work conserving :

 the processor may be idle while jobs are not completed
 Impact of an additional task
 Execution of aperiodic tasks
 Difficult construction of the table

 Allocating slots is a complex problem (NP-hard)

Static Priority Scheduling
Highest Priority First

 Offline, each task is assigned a priority (integer
number) before runtime

 Online, the scheduler always executes the task of the
ready tasks list with the highest priority

 The scheduler can preempt the current task to
execute a new task that has just been activated

 There are many algorithms to assign offline priorities
to tasks (mostly based on their timing parameters)

 The objective is to find a mapping that makes the
task set schedulable

Laurent Pautet

Static Priority Scheduling
Response Time

 The critical instant for a set of synchronous periodic tasks is
when all jobs start at the same time

 For each task, compute time t at which its first activation
completes by integrating the execution of highest priority tasks
activated in the mean time
 Start with a first response time Ri

0 = Ci
 Compute Rin+1= Sj≤iCj * éRin/Tjù to integrate the execution of the

tasks of highest priority
 Iterate until a fixed point is reached
 In other word : "i, 1≤i≤n, ∃ t≤Di Wi(t) = Sj≤iCj * ét/Tjù ≤ t

 The task is schedulable if the response time is a fixed value less
than or equal to the deadline

 Valid for any static priority scheduling

Laurent Pautet

Laurent Pautet

Static Priority Scheduling
Response Time (RMS)

T C P
τ1 3 1 3

τ2 5 2 2

τ3 15 4 1

1. Check for τ1
1. R0 = C1 = 1
2. R1 = Response (R0) = 1*1 = 1

2. Check for τ2 and take into account τ1
1. R0 = C2 = 2

1. R1 = Response (R0) = 1*1+1*2 = 3
2. R2 = Response (R1) = 1*1+1*2 = 3

Laurent Pautet

Static Priority Scheduling
Response Time (RMS)

1. Check for τ3 and take into account τ1and τ2
1. R0 = C3 = 4

2. R1 = Response (R0) = 2*1+1*2+1*4 = 8

3. R2 = Response (R1) = 3*1+2*2+1*4 = 11

4. R3 = Response (R2) = 4*1+3*2+1*4 = 14

5. R4 = Response (R3) = 5*1+3*2+1*4 = 15
6. R5 = Response (R4) = 5*1+3*2+1*4 = 15

T C P
τ1 3 1 3

τ2 5 2 2

τ3 15 4 1

Static Priority Scheduling
OPA – Optimal Priority Assignment

 Let have N fixed priority tasks
 Among these tasks, find a task that can have

the lowest priority …
 Its response time should be less than its deadline

when all the others have a higher priority
 If there is such a task, give it the lowest priority
 Otherwise, the system is not schedulable

 Repeat process with the N-1 remaining tasks

Laurent Pautet

Laurent Pautet

 Hypotheses
 Synchronous, deadline implicit & independent tasks
 Synchronous (Ai = 0)
 Deadline implicit (Di = Ti)

 Principle
 Task activation or completion wake up the scheduler
 Select the ready task with the shortest period

 Scheduling test
 Necessary condition: ∑Ci/Ti ≤ 1
 Sufficient condition: ∑Ci/Ti ≤ n (21/n – 1)

→ log(2) = 69%

Static Priority Scheduling
Rate Monotonic Scheduling

Static Priority Scheduling
Rate Monotonic Scheduling

Laurent Pautet

3(21/3–1)=78% Period WCET Usage
t1 10 2 0.200
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Static Priority Schdeuling
Rate Monotonic Scheduling

3(21/3–1)=78% Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Static Priority Scheduling
Rate Monotonic Scheduling

t1

t2

t3

3x(21/3-1)=0.78 Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

0.33313t’3= t3 / 6
0.267415t’2

0.40025t’1 = t1 / 2
UsageWCETPeriod3x(21/3-1)=0.78

Laurent Pautet

Static Priority Scheduling
Rate Monotonic Scheduling

 Advantages
 Easy to implement
 Optimal for static priority scheduling
 Frequent in the classic executives
 Good behavior in case of overload

 Disadvantages
 Possible oversizing of the system

 RMS is always a possible result of OPA
 Both RMS and OPA are optimal

OPA vs RMS

 t1 lowest priority: R0= 2; R1=7; or R1>T1

 t2 lowest priority: R0= 4; R1=8; R2=14; R3=15;
 t1: R0= 2; R1=3; t2 < t1 < t3 : same as RMS
 t3: R0= 1; R1=3; t2 < t3 < t1 : different from RMS

 t3 lowest priority: R0= 1; R1=7; or R1>T3

 OPA always finds an assignment if it exists (optimal),
in particular the assignment of RMS (also optimal)

Laurent Pautet

3x(21/3-1)=0.78 Period WCET Usage
t1 5 2 0.400
t2 15 4 0.267
t3 3 1 0.333

Laurent Pautet

Static Priority Scheduling
Deadline Monotonic Scheduling

 Hypotheses
 Synchronous and independant tasks
 The deadline is less than the period (Di <= Ti)

 Principle
 Select the ready task with the shortest deadline
 When for all tasks Ti = Di , DMS becomes RMS

 Scheduling test
 The necessary and sufficient condition exists
 Sufficient condition: ∑Ci/Di ≤ n (21/n – 1)

(we oversize : the task period is its deadline)

Laurent Pautet

Static Priority Scheduling
Deadline Monotonic Scheduling

 Advantages
 See RMS
 RMS penalizes long period but short deadline tasks
 DMS is better in this case.

 Disadvantages
 See RMS
 Do not to be confused with EDF

Laurent Pautet

Dynamic Priority Scheduling
Earliest Deadline First

 Hypotheses
 Periodic, independent tasks
 Deadline implicit (Di = Ti) or not (Di <= Ti)

 Principle
 Task activation or completion wake up the scheduler
 Select the ready task with the earliest deadline

 Scheduling test
 Necessary and sufficient condition : ∑Ci/Ti ≤ 1
 Sufficient when not implicit (Di <= Ti) : ∑Ci/Di ≤ 1

Laurent Pautet

Dynamic Priority Scheduling
Earliest Deadline First

Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Dynamic Priority Scheduling
Earliest Deadline First

 Advantages
 Possible use of 100% of the processor
 Optimal for dynamic priority scheduling if the deadlines are

lower than the periods
 Disadvantages

 Slight complexity of implementation
 Less common in executives than RMS
 Bad behavior in case of overload

 Remarks
 If Di is arbitrary compared to Ti, the necessary and sufficient

condition is no longer sufficient.

Laurent Pautet

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

 Hypotheses
 Similar to those of EDF

 Principle
 Task activation or completion wake the scheduler
 Select the ready task with the lowest margin
 margin = deadline – remaining comp. time – current time

 Scheduling test
 Necessary and sufficient condition: ∑Ci/Ti ≤ 1

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

 Advantages
 Better than EDF in the case of multi-processor

 Disadvantages
 High complexity of implementation
 Complex to compute remaining execution time
 Bad behavior in case of overload
 High number of preemptions
 LLF oscillates in case of tied-laxities tasks

Laurent Pautet

Aperiodic Task Scheduling

 Definitions
 Aperiodic tasks are activated at arbitrary instants
 Sporadic tasks are aperiodic tasks activated with a

minimum delay between two activations
 Sporadic tasks are almost periodic as they are

activated with a variable but minimal period
 Aperiodic tasks must respect their deadlines

 Principles
 Aperiodic tasks must be integrated into the

scheduling of periodic tasks

Laurent Pautet

Aperiodic tasks with periodic tasks

 First solution for sporadic tasks
 Handle sporadic tasks as periodic tasks when

scheduling algorithm supports it
 Ie the scheduling algorithm accepts tasks that are

not activated at fixed time
 Second solution (more general)

 Handle aperiodic tasks with a periodic server
 The periodic server when it is active handles the

aperiodic tasks as long as it is allowed
 Reuse schedulability tests for periodic tasks

Scheduling aperiodic tasks
Background server

 The aperiodic tasks are processed sequentially by a
low priority server

 The server has no associated budget (since it has the
lowest priority)

 The lack of budget comes from the fact that the
server fills the holes in the scheduling

Laurent Pautet

Scheduling aperiodic tasks
Background server

Laurent Pautet

Period/Release Budget Priority Utilization/Response
Aperiodic task e1 7 3 17-7=10
Aperiodic task e2 11 4 35-11=24
Periodic task t1 10 4 3 0,400
Periodic task t2 20 6 2 0,300
Background Server * * 1 *

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Background server

 Advantages
 Simplicity of implementation

 Disadvantages
 Difficult to predict response time of aperiodic tasks
 … although aperiodic tasks can be critical
 Bad response time under heavy workload

Scheduling aperiodic tasks
Polling server

 Aperiodic tasks are processed sequentially by a high
priority server

 The server has a budget and a period
 The budget is reallocated every period
 The time consumed to process an aperiodic task is

debited on its budget
 The server executes aperiodic tasks within its budget
 The server becomes inactive when there is no task to

execute and gives up its budget until next period

Laurent Pautet

Scheduling aperiodic tasks
Polling server

t1

t2

S

C

Period/Release Budget Priority Utilisation/Response
Aperiodic task e1 7 3 10
Aperiodic task e2 11 4 22
Periodic task t1 10 4 2 0,400 6
Periodic task t2 20 6 1 0,300 20
Polling Server 8 2 3 0,250 2

T=0
Give up

Its budget

T=8
Reallocate
its budget

T=18
Exhaust

its budget

T=16
Reallocate
its budget

T=24
Reallocate
its budget

T=26
Exhaust

its budget

T=33
Give up

Its budget

Laurent Pautet

Scheduling aperiodic tasks
Polling server

 Advantages
 Simplicity of implementation

 Disadvantages
 By giving up its budget, the server exhausts the

processing time allocated to future tasks
 Bad response time even when aperiodic tasks are

released just after server activations

Laurent Pautet

Scheduling aperiodic tasks
Deferred server

 The aperiodic tasks are processed sequentially by a
high priority server

 The server has a budget and a period
 The budget is reallocated every period
 The time consumed to process an aperiodic task is

debited on its budget
 The server becomes active only when an aperiodic

task is to be processed and its budget is not yet
exhausted

Scheduling aperiodic tasks
Deferred server

Period / Release Budget Priority Usage / Response
Aperiodic task e1 7 3 3
Aperiodic task e2 11 4 15
Periodic task t1 10 4 2 0,400
Periodic task t2 20 6 1 0,300
Deferred server S 8 2 3 0,250

T=0
Preserve
its budget

T=7
Consume
its budget

T=8
Reload and
consume

T=16
Reload and
consume

T=24
Reload and
consume

T=32
Reload

its budget

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Deferred server

 Advantages
 It preserves its budget for future tasks

 Disadvantages
 By not immediately consuming its budget, a

deferred server violates the scheduling hypotheses
of a periodic task because it does not execute
while it can.

 A scheduling analysis can claim that the
scheduling is correct while the server causes a
deadline miss of a low priority task by delaying its
execution

Scheduling aperiodic tasks
Issue with deferred server

Period / Release Budget Priority Utilisation/Response
Aperiodic task e1 28 6 12
Periodic task t1 14 4 1 0,285 13
Periodic task t2 14 5 2 0,357 9
Deferred Server S 10 2 3 0,200 2

t1

t2

S

C

Tasks S, t1 and t t2 are schedulable with RMS: RS=2<8, Rt1=8<14, Rt2=13<14

Laurent Pautet

Scheduling aperiodic tasks
Sporadic server

 The aperiodic tasks are processed sequentially by a
high priority server

 The server has a budget and a period
 The time consumed to process an aperiodic task is

debited on its budget
 The time consumed is credited back after a task

period from the time it starts consuming
 The server becomes active when an aperiodic task is

to be processed and its budget is not exhausted

Scheduling aperiodic tasks
Sporadic server

Period/Release Budget Priority Utilisation/Response
Aperiodic Task e1 7 3 9
Aperiodic Task e2 11 4 21
Aperiodic Task t1 10 4 2 0,400
Aperiodic Task t2 20 6 1 0,300
Sporadic Server S 8 2 3 0,250

T=0
Preserve
its budget

T=7
Consume
its budget

Reload
for 2 units
at T=15

T=15
Reload and
consume

Reload
for 2 units
at T=23

T=23
Reload and
consume

Reload
for 2 units
at T=31

T=31
Reload and
consume

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Sporadic server

 Advantages
 Better properties than previous servers

 Disadvantages
 High complexity compared to the deferred server

 Variant
 An alternative is to transform the sporadic server

into a background server (low priority) when its
budget is exhausted in order to take advantage
the unused processing time

Laurent Pautet

Sharing resources
Blocking Time (BT) and Scheduling

BT = 2u
Max BT= 4u

 Analogy with the previous model (independant tasks)
 Let Bi be the longest duration of potential blocking of task ti by

a task of lower priority
 Analogy with a scenario in which task ti would have a WCET of

Ci + Bi instead of Ci

 The goal is to reduce Bi by introducing adequate
resource sharing policies

t1

t2

Laurent Pautet

Sharing resources
Including blocking time in scheduling test

 A high priority task can be blocked directly by a low priority
task because they share a common resource

 A middle priority task can be blocked indirectly when a high
priority task is blocked by a low priority task, those tasks having
no resource shared with the middle priority task

 Sufficient scheduling condition with RMS
"i, 1≤i≤n, Sj≤iCj/Tj + Bi/Ti ≤ n (21/n – 1)

 Response time with static priorities and blocking times
"i, 1≤i≤n, ∃ t≤Di Wi(t) = Sj≤iCj * ét/Tjù + Bi ≤ t

 Sufficient scheduling condition with EDF
"i, 1≤i≤n, Sj≤iCj/Tj + Bi/Ti ≤ 1

Laurent Pautet

Sharing resources
Priority Inheritance Protocol

 Problems
 Preemptive scheduling with fixed priority can lead to

a situation of priority inversion
 A low priority task blocks a high priority task for a

time longer than that of its mutual exclusion
 Difficult to estimate upper bound of blocking time

 Solution
 Priority inheritance raises the priority of the blocking

task to the blocked one
 Once the semaphore is released, the blocking task

returns to its initial priority

Laurent Pautet

Priority Inheritance Protocol
Blocking time longer than the expected one

With PIP
BT = 2u
Max BT = 4u

Without PIP
BT = 6u
Max BT = 12

t1

t2

t3

t1

t2

t3

Compute the maximum blocking time (BT) on this example

Laurent Pautet

Priority Inheritance Protocol
Benefits and Drawbacks

 Benefits
 Reduce blocking time

 Remaining drawbacks
 N resources : N blocking times & priority elevations
 Deadlocks are possible

 Properties
 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 A low task can indirectly block a task without

sharing a resource because of priority inheritance

Priority Inheritance Protocol
Blocking Time Analysis

 t3 can be actually blocked by the 3 resources
 Although t3 uses only R3, it can be indirectly blocked

by t4 or t5 when they block t1 or t2 using R1 et R2
because of priority inheritance (t4 inherits t1 priority)

 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 The worst case for t3 occurs when

 t4 locks R1, inherits from t1

 t5 locks R2, inherits from t2

 B3 = max(3+2,3+1,1+2,1+1) = 5

Laurent Pautet

R1 R2 R3 B
t1 2 . . 3
t2 . 1 . 5
t3 . . 2 5
t4 3 3 1 2
t5 1 2 1 0

Examples of indirect blocking

Laurent Pautet

t1 t4

t2 t5

t3

t3

t4

t3

t5

Laurent Pautet

Sharing resources
Priority Ceiling Protocol

 Problems
 N resources : N blocking times & priority

elevations
 Deadlocks are possible

 Solution (fixed priorities)
 The (static) priority ceiling represents the

maximum priority of tasks using the resource
 A task gets access to a resource when its priority

is strictly greater than all the priority ceiling of the
resources in use

 The blocking task inherits the priority of the
highest priority blocked task

Laurent Pautet

Priority Ceiling Protocol
Chained blocking

With PCP
BT = 2u
Max BT = 6u

Without PCP
BT = 6u
Max BT = 10u

t1

t2

t3

t2

t3

Compute the maximum blocking time (BT) on this example

Laurent Pautet

Priority Ceiling Protocol
Deadlock

t1

t2

t1

t2

With PCP

Without PCP

Laurent Pautet

Priority Ceiling Protocol
Benefits and drawbacks

 Benefits
 No chained blocking time
 The task is blocked at most once whatever the

number of shared resources
 No deadlock

 Remaing drawbacks
 Implementation complexity
 Multiple priority elevations

Priority Ceiling Protocol
Analysis of blocking time

 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 A low task can indirectly block a task without

sharing a resource because of priority inheritance
 With PCP, a task can be blocked by a lower priority

task only once and on a single resource

Laurent Pautet

R1 R2 R3 B
t1 2 . . 3
t2 . 1 . 3
t3 . . 2 3
t4 3 3 1 2
t5 1 2 1 0

Laurent Pautet

Sharing resources
Immediate Priority Ceiling Protocol

 Problems
 PCP implementation complexity
 PCP multiple priority changes

 Solution
 The (static) priority ceiling represents the

maximum priority of the tasks that use it
 When a task gets access to a resource, it inherits

(immediately) a priority strictly greater than the
priority ceiling

Laurent Pautet

Immediate Priority Ceiling Protocol
Deadlock

t1

t2

t1

t2

t1

t2

PIP

PCP

IPCP

Laurent Pautet

Immediate Priority Ceiling Protocol
Benefits and drawbacks

 Benefits
 Less complex than PCP

 Drawbacks
 IPCP (and PCP) relies on fixed priority scheduling

Laurent Pautet

Conclusions

 To satisfy the time constraints in hard real
time systems, the first concern must be the
predetermination of the system behavior.

 Offline static scheduling is most often the
only practical way to achieve predictable
behavior in a complex system

Laurent Pautet

Lectures

 G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications Kluwer academic Publishers, Boston, 1997.

 C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-time
Environment. Journal of the ACM, 20(1):46--61, Jan. 1973.

 L. Sha, R. Rajkumar and J. Lehoczky, "Priority Inheritance Protocol": An Approach to real-
time synchronisation," IEEE Transaction on Computers 39(9), pp.1175-1185, 1993.

 Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency control protocol for
real-time systems. Journal of Real-Time Systems, 2:325--346, 1990.

 T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems, 3(1):67--99,
March 1991.

 B. Sprunt, L. Sha, and J. P. Lehoczky, "Aperiodic scheduling for hard real-time system". The
Journal of Real-Time Systems, 1, pp. 27-60, 1989.

