
Real-Time Scheduling
for Mono-Processor Systems

Laurent Pautet
strec.wp.imt.fr

pautet.wp.imt.fr/jobs
Laurent.Pautet@enst.fr

Version 3.2

mailto:Laurent.Pautet@enst.fr

Real-Time Embedded Systems
Examples

Laurent Pautet 2

?
What do they have in common ?

Nuclear PlantAutomated SubwayCellphoneAirplane

Laurent Pautet

Embedded Systems
Definition and Requirements

An embedded system is a special-purpose system
which software, hardware, mechanical, … components

are encapsulated in the device it controls

As opposed to general-purpose systems,
they have specific properties such as

low consumption, small size and weight, limited resources …

A cruise control, a washing machine, factory robot, …

Laurent Pautet

Real-Time Systems
Definition and Requirements

A real-time system consists in one or more sub-systems
that have to react under specified time requirements

to stimuli produced by the environment

A response after a deadline is invalid
Even if the response is logically correct

A cruise control, a washing machine, factory robot,
a nuclear plant, an air traffic control, trading center, …

Most real-time systems are embedded systems

Laurent Pautet

Timing constraints

 The application must have a precise
and consistent image of the system
in its environment at anytime

 The goal of real-time systems is to
minimize the difference between
the images of the system in reality
and in its application (|R(t)-A(t)|<ε)

 To update the image in the
application, it reads in particular
sensors periodically. The period
being a temporal granularity during
which the measures evolve
significantly)

Image of the system
in the real environment

Image of the system
in the application

Polling
Events

Actions

R(t) A(t)

Laurent Pautet

Non Fonctional Properties

These systems have to be predictible

 Reactivity and temporal consistency

 Define temporal interval during which data is valid
 Define time granularity (ship sec, rail msec, airplane usec)
 Guarantee response time boundaries (known in advance)

 Reliability and Availability
 Guarantee the correctness of the computed data values
 Enforce system availability in presence of hostile conditions

(fault tolerance, malicious behavior …)

Non-Fonctional Properties -> temporal & structural

From requirements to technical solutions

 Requirements
 Reactivity & temporal consistency
 Reliability & Availability

 Solutions
 Architectures and frameworks to help the design

(Kernels, RT buses and networks, …)
 Models and methods to enforce predictibility

(RT scheduling, Fault tolerance, …)
 Suitable programming languages

 (C-Misra, Java-RT, Standard POSIX 1003.1c, Ada, …)
 Tools to integrate modeling, analysis and synthesis

(AADL, Marte, verification, simulation, generation, testing)

Laurent Pautet

Notations

 Parameters of task ti
 Ci : Worst Case Execution Time (WCET) of task ti
 Ai : Arrival time of task ti

 Task must not arrive before Ai

 Ai may be different from 0 (dependency)
 Ti : Period of task ti
 Di : Deadline of task ti

 Task must not complete after Di

 Ai + Ci < Di however …
 Di ≤ Ti is not mandatory (constrained deadline)

 Ui = Ci / Ti = processor utilisation of task ti
 Operators

 Ceiling éxù (least integer greater than or equal to x)
 Floorëxû (greatest integer less than or equal to x

Laurent Pautet

Worst Case Execution Time evaluation

Laurent Pautet

Laurent Pautet

Hard Real-Time Task

Sa
tis

fa
ct

io
n

Arrival Deadline

100%

-100%
Period

Ai Di Ti time

Ci

WCET

Laurent Pautet

Soft Real-Time Task
(Different from Best Effort Task that has No Deadline)

Sa
tis

fa
ct

io
n

Arrival Deadline

100%

-100%
Period

Ai Di

Ti time

Ci

WCET

Laurent Pautet

Hard real-time vs soft real-time tasks

 For a hard real-time task
 Deadlines must always be fulfilled
 WCET must never be overrun (over-dimension)
 Reduce inaccuracy from non-determinism

 Pre-allocation (no dynamic allocation), …
 Non-predictible cache behavior, …

 For a soft real-time task
 Missing deadlines can be tolerated:

 For a given percentage of times
 For a given number of times
 For a given frequency

 And result in a degraded execution mode
 Reuse previous job results for instance

Laurent Pautet

Sub-systems of real-time systems

A real-time system is composed of several sub-systems
with different real-time properties

Some of these sub-systems may be non real-time, soft
real-time or hard real-time sub-systems

 Hard real-time tasks must fulfill their deadlines.
 Soft real-time tasks may fail to fulfill their deadlines.

If so, they may execute in a degraded mode.
 Other tasks execute in best-effort mode.

Laurent Pautet

Real-Time Schedulers

 Allocate (CPU) resources to guarantee safety
(timing) properties

 In normal mode, respect the time constraints
of all tasks

 Otherwise, limit the effects of time overflows
and ensure compliance with the constraints
of the most critical tasks

In the following, it will be ensured that the time dedicated to the
scheduling algorithm and that of context switch are negligible

which implies a low complexity and an effective implementation

Definitions
Execution Model

 Dependent or independent tasks
 Independent tasks sharing only the processor
 Dependent tasks with shared resources or linked by

precedence constraints
 Synchronous tasks have the same activation time (0)
 Periodic task with implicit deadline means periodic

task with deadline equals to period

 Task job : instanciation of a task during period
 Worst Case Execution Time : worst computation time
 Response time : time to complete a job while other

jobs are also running on the same processor

Laurent Pautet

Definitions

 Preemptive and non-preemptive scheduling
 A preemptive scheduler can interrupt a task for a higher

priority task when a non-preemptive scheduler executes the
task until it completes

 Offline or online scheduling
 A scheduler decides offline or online when and which task to

execute
 Optimal scheduling

 Algorithm that produces a schedule for any set of
schedulable tasks (if an algorithm does, it does too)

 Scheduling test
 A necessary and / or sufficient condition for an algorithm to

satisfy the temporal constraints of a set of tasks

Laurent Pautet

Overview of algorithms

 Scheduling periodic tasks
 Non-preemptive table-based scheduling
 Preemptive scheduling with static priorities

 Rate and Deadline Monotonic Scheduling
 Preemptive scheduling with dynamic priorities

 Earliest Deadline First and Least Laxity First

 Scheduling aperiodic tasks
 Background, polling, deferred & sporadic servers

 Sharing resources
 Priority Inheritance, Priority Ceiling & Highest

Locker
Laurent Pautet

Proving schedulability
using a scheduling algorithm

 To prove schedulability/feasibility of a task set
 Execute the algorithm over a feasibility interval
 Compute a (necessary - sufficient) scheduling test
 Compute response time & check against deadlines

 Feasibility interval : minimum interval needed to
verify the schedulability of a system
 For independent synchronous periodic tasks :
∀i: Di ≤ Ti with a fixed priority scheduling
[0, LCM (∀i: Ti)] (LCM or hyper-period)

 For independent asynchronous periodic tasks
∀i: Di ≤ Ti with a fixed priority scheduling
[0, 2 * LCM (∀i: Ti) + max (∀i: Ai)]

Laurent Pautet

Table Driven Scheduling
Principles

 Hypotheses
 Periodic tasks

 Principles
 Major cycle = LCM of the task periods
 Minor cycle = non-preemptible block
 The minor cycle divides the major cycle
 A cyclic scheduler loops on the major cycle by

executing the sequence of minor cycles
 The minor cycle provides a control point to check

the respect of the timing constraints

Laurent Pautet

Table Driven Scheduling
Example

Laurent Pautet

Period Deadline WCET Usage
t1 10 10 2 0,200
t2 15 15 4 0.267
t3 6 6 2 0.333

t1

t2

t3

Minor Cycle

Major Cycle

Laurent Pautet

Table Driven Scheduling
Advantages and Disadvantages

 Advantages
 Effective implementation
 No need for mutual exclusion between tasks

 Disadvantages
 Not work conserving :

 the processor may be idle while jobs are not completed
 Impact of an additional task
 Execution of aperiodic tasks
 Difficult construction of the table

 Allocating slots is a complex problem (NP-hard)

Static Priority Scheduling
Highest Priority First

 Offline, each task is assigned a priority (integer
number) before runtime

 Online, the scheduler always executes the task of the
ready tasks list with the highest priority

 The scheduler can preempt the current task to
execute a new task that has just been activated

 There are many algorithms to assign offline priorities
to tasks (mostly based on their timing parameters)

 The objective is to find a mapping that makes the
task set schedulable

Laurent Pautet

Static Priority Scheduling
Response Time

 The critical instant for a set of synchronous periodic tasks is
when all jobs start at the same time

 For each task, compute time t at which its first activation
completes by integrating the execution of highest priority tasks
activated in the mean time
 Start with a first response time Ri

0 = Ci
 Compute Rin+1= Sj≤iCj * éRin/Tjù to integrate the execution of the

tasks of highest priority
 Iterate until a fixed point is reached
 In other word : "i, 1≤i≤n, ∃ t≤Di Wi(t) = Sj≤iCj * ét/Tjù ≤ t

 The task is schedulable if the response time is a fixed value less
than or equal to the deadline

 Valid for any static priority scheduling

Laurent Pautet

Laurent Pautet

Static Priority Scheduling
Response Time (RMS)

T C P
τ1 3 1 3

τ2 5 2 2

τ3 15 4 1

1. Check for τ1
1. R0 = C1 = 1
2. R1 = Response (R0) = 1*1 = 1

2. Check for τ2 and take into account τ1
1. R0 = C2 = 2

1. R1 = Response (R0) = 1*1+1*2 = 3
2. R2 = Response (R1) = 1*1+1*2 = 3

Laurent Pautet

Static Priority Scheduling
Response Time (RMS)

1. Check for τ3 and take into account τ1and τ2
1. R0 = C3 = 4

2. R1 = Response (R0) = 2*1+1*2+1*4 = 8

3. R2 = Response (R1) = 3*1+2*2+1*4 = 11

4. R3 = Response (R2) = 4*1+3*2+1*4 = 14

5. R4 = Response (R3) = 5*1+3*2+1*4 = 15
6. R5 = Response (R4) = 5*1+3*2+1*4 = 15

T C P
τ1 3 1 3

τ2 5 2 2

τ3 15 4 1

Static Priority Scheduling
OPA – Optimal Priority Assignment

 Let have N fixed priority tasks
 Among these tasks, find a task that can have

the lowest priority …
 Its response time should be less than its deadline

when all the others have a higher priority
 If there is such a task, give it the lowest priority
 Otherwise, the system is not schedulable

 Repeat process with the N-1 remaining tasks

Laurent Pautet

Laurent Pautet

 Hypotheses
 Synchronous, deadline implicit & independent tasks
 Synchronous (Ai = 0)
 Deadline implicit (Di = Ti)

 Principle
 Task activation or completion wake up the scheduler
 Select the ready task with the shortest period

 Scheduling test
 Necessary condition: ∑Ci/Ti ≤ 1
 Sufficient condition: ∑Ci/Ti ≤ n (21/n – 1)

→ log(2) = 69%

Static Priority Scheduling
Rate Monotonic Scheduling

Static Priority Scheduling
Rate Monotonic Scheduling

Laurent Pautet

3(21/3–1)=78% Period WCET Usage
t1 10 2 0.200
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Static Priority Schdeuling
Rate Monotonic Scheduling

3(21/3–1)=78% Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Static Priority Scheduling
Rate Monotonic Scheduling

t1

t2

t3

3x(21/3-1)=0.78 Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

0.33313t’3= t3 / 6
0.267415t’2

0.40025t’1 = t1 / 2
UsageWCETPeriod3x(21/3-1)=0.78

Laurent Pautet

Static Priority Scheduling
Rate Monotonic Scheduling

 Advantages
 Easy to implement
 Optimal for static priority scheduling
 Frequent in the classic executives
 Good behavior in case of overload

 Disadvantages
 Possible oversizing of the system

 RMS is always a possible result of OPA
 Both RMS and OPA are optimal

OPA vs RMS

 t1 lowest priority: R0= 2; R1=7; or R1>T1

 t2 lowest priority: R0= 4; R1=8; R2=14; R3=15;
 t1: R0= 2; R1=3; t2 < t1 < t3 : same as RMS
 t3: R0= 1; R1=3; t2 < t3 < t1 : different from RMS

 t3 lowest priority: R0= 1; R1=7; or R1>T3

 OPA always finds an assignment if it exists (optimal),
in particular the assignment of RMS (also optimal)

Laurent Pautet

3x(21/3-1)=0.78 Period WCET Usage
t1 5 2 0.400
t2 15 4 0.267
t3 3 1 0.333

Laurent Pautet

Static Priority Scheduling
Deadline Monotonic Scheduling

 Hypotheses
 Synchronous and independant tasks
 The deadline is less than the period (Di <= Ti)

 Principle
 Select the ready task with the shortest deadline
 When for all tasks Ti = Di , DMS becomes RMS

 Scheduling test
 The necessary and sufficient condition exists
 Sufficient condition: ∑Ci/Di ≤ n (21/n – 1)

(we oversize : the task period is its deadline)

Laurent Pautet

Static Priority Scheduling
Deadline Monotonic Scheduling

 Advantages
 See RMS
 RMS penalizes long period but short deadline tasks
 DMS is better in this case.

 Disadvantages
 See RMS
 Do not to be confused with EDF

Laurent Pautet

Dynamic Priority Scheduling
Earliest Deadline First

 Hypotheses
 Periodic, independent tasks
 Deadline implicit (Di = Ti) or not (Di <= Ti)

 Principle
 Task activation or completion wake up the scheduler
 Select the ready task with the earliest deadline

 Scheduling test
 Necessary and sufficient condition : ∑Ci/Ti ≤ 1
 Sufficient when not implicit (Di <= Ti) : ∑Ci/Di ≤ 1

Laurent Pautet

Dynamic Priority Scheduling
Earliest Deadline First

Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Dynamic Priority Scheduling
Earliest Deadline First

 Advantages
 Possible use of 100% of the processor
 Optimal for dynamic priority scheduling if the deadlines are

lower than the periods
 Disadvantages

 Slight complexity of implementation
 Less common in executives than RMS
 Bad behavior in case of overload

 Remarks
 If Di is arbitrary compared to Ti, the necessary and sufficient

condition is no longer sufficient.

Laurent Pautet

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

 Hypotheses
 Similar to those of EDF

 Principle
 Task activation or completion wake the scheduler
 Select the ready task with the lowest margin
 margin = deadline – remaining comp. time – current time

 Scheduling test
 Necessary and sufficient condition: ∑Ci/Ti ≤ 1

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

Period WCET Usage
t1 10 4 0.400
t2 15 4 0.267
t3 18 6 0.333

t1

t2

t3

Laurent Pautet

Dynamic Priority Scheduling
Least Laxity First

 Advantages
 Better than EDF in the case of multi-processor

 Disadvantages
 High complexity of implementation
 Complex to compute remaining execution time
 Bad behavior in case of overload
 High number of preemptions
 LLF oscillates in case of tied-laxities tasks

Laurent Pautet

Aperiodic Task Scheduling

 Definitions
 Aperiodic tasks are activated at arbitrary instants
 Sporadic tasks are aperiodic tasks activated with a

minimum delay between two activations
 Sporadic tasks are almost periodic as they are

activated with a variable but minimal period
 Aperiodic tasks must respect their deadlines

 Principles
 Aperiodic tasks must be integrated into the

scheduling of periodic tasks

Laurent Pautet

Aperiodic tasks with periodic tasks

 First solution for sporadic tasks
 Handle sporadic tasks as periodic tasks when

scheduling algorithm supports it
 Ie the scheduling algorithm accepts tasks that are

not activated at fixed time
 Second solution (more general)

 Handle aperiodic tasks with a periodic server
 The periodic server when it is active handles the

aperiodic tasks as long as it is allowed
 Reuse schedulability tests for periodic tasks

Scheduling aperiodic tasks
Background server

 The aperiodic tasks are processed sequentially by a
low priority server

 The server has no associated budget (since it has the
lowest priority)

 The lack of budget comes from the fact that the
server fills the holes in the scheduling

Laurent Pautet

Scheduling aperiodic tasks
Background server

Laurent Pautet

Period/Release Budget Priority Utilization/Response
Aperiodic task e1 7 3 17-7=10
Aperiodic task e2 11 4 35-11=24
Periodic task t1 10 4 3 0,400
Periodic task t2 20 6 2 0,300
Background Server * * 1 *

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Background server

 Advantages
 Simplicity of implementation

 Disadvantages
 Difficult to predict response time of aperiodic tasks
 … although aperiodic tasks can be critical
 Bad response time under heavy workload

Scheduling aperiodic tasks
Polling server

 Aperiodic tasks are processed sequentially by a high
priority server

 The server has a budget and a period
 The budget is reallocated every period
 The time consumed to process an aperiodic task is

debited on its budget
 The server executes aperiodic tasks within its budget
 The server becomes inactive when there is no task to

execute and gives up its budget until next period

Laurent Pautet

Scheduling aperiodic tasks
Polling server

t1

t2

S

C

Period/Release Budget Priority Utilisation/Response
Aperiodic task e1 7 3 10
Aperiodic task e2 11 4 22
Periodic task t1 10 4 2 0,400 6
Periodic task t2 20 6 1 0,300 20
Polling Server 8 2 3 0,250 2

T=0
Give up

Its budget

T=8
Reallocate
its budget

T=18
Exhaust

its budget

T=16
Reallocate
its budget

T=24
Reallocate
its budget

T=26
Exhaust

its budget

T=33
Give up

Its budget

Laurent Pautet

Scheduling aperiodic tasks
Polling server

 Advantages
 Simplicity of implementation

 Disadvantages
 By giving up its budget, the server exhausts the

processing time allocated to future tasks
 Bad response time even when aperiodic tasks are

released just after server activations

Laurent Pautet

Scheduling aperiodic tasks
Deferred server

 The aperiodic tasks are processed sequentially by a
high priority server

 The server has a budget and a period
 The budget is reallocated every period
 The time consumed to process an aperiodic task is

debited on its budget
 The server becomes active only when an aperiodic

task is to be processed and its budget is not yet
exhausted

Scheduling aperiodic tasks
Deferred server

Period / Release Budget Priority Usage / Response
Aperiodic task e1 7 3 3
Aperiodic task e2 11 4 15
Periodic task t1 10 4 2 0,400
Periodic task t2 20 6 1 0,300
Deferred server S 8 2 3 0,250

T=0
Preserve
its budget

T=7
Consume
its budget

T=8
Reload and
consume

T=16
Reload and
consume

T=24
Reload and
consume

T=32
Reload

its budget

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Deferred server

 Advantages
 It preserves its budget for future tasks

 Disadvantages
 By not immediately consuming its budget, a

deferred server violates the scheduling hypotheses
of a periodic task because it does not execute
while it can.

 A scheduling analysis can claim that the
scheduling is correct while the server causes a
deadline miss of a low priority task by delaying its
execution

Scheduling aperiodic tasks
Issue with deferred server

Period / Release Budget Priority Utilisation/Response
Aperiodic task e1 28 6 12
Periodic task t1 14 4 1 0,285 13
Periodic task t2 14 5 2 0,357 9
Deferred Server S 10 2 3 0,200 2

t1

t2

S

C

Tasks S, t1 and t t2 are schedulable with RMS: RS=2<8, Rt1=8<14, Rt2=13<14

Laurent Pautet

Scheduling aperiodic tasks
Sporadic server

 The aperiodic tasks are processed sequentially by a
high priority server

 The server has a budget and a period
 The time consumed to process an aperiodic task is

debited on its budget
 The time consumed is credited back after a task

period from the time it starts consuming
 The server becomes active when an aperiodic task is

to be processed and its budget is not exhausted

Scheduling aperiodic tasks
Sporadic server

Period/Release Budget Priority Utilisation/Response
Aperiodic Task e1 7 3 9
Aperiodic Task e2 11 4 21
Aperiodic Task t1 10 4 2 0,400
Aperiodic Task t2 20 6 1 0,300
Sporadic Server S 8 2 3 0,250

T=0
Preserve
its budget

T=7
Consume
its budget

Reload
for 2 units
at T=15

T=15
Reload and
consume

Reload
for 2 units
at T=23

T=23
Reload and
consume

Reload
for 2 units
at T=31

T=31
Reload and
consume

t1

t2

S

C

Laurent Pautet

Scheduling aperiodic tasks
Sporadic server

 Advantages
 Better properties than previous servers

 Disadvantages
 High complexity compared to the deferred server

 Variant
 An alternative is to transform the sporadic server

into a background server (low priority) when its
budget is exhausted in order to take advantage
the unused processing time

Laurent Pautet

Sharing resources
Blocking Time (BT) and Scheduling

BT = 2u
Max BT= 4u

 Analogy with the previous model (independant tasks)
 Let Bi be the longest duration of potential blocking of task ti by

a task of lower priority
 Analogy with a scenario in which task ti would have a WCET of

Ci + Bi instead of Ci

 The goal is to reduce Bi by introducing adequate
resource sharing policies

t1

t2

Laurent Pautet

Sharing resources
Including blocking time in scheduling test

 A high priority task can be blocked directly by a low priority
task because they share a common resource

 A middle priority task can be blocked indirectly when a high
priority task is blocked by a low priority task, those tasks having
no resource shared with the middle priority task

 Sufficient scheduling condition with RMS
"i, 1≤i≤n, Sj≤iCj/Tj + Bi/Ti ≤ n (21/n – 1)

 Response time with static priorities and blocking times
"i, 1≤i≤n, ∃ t≤Di Wi(t) = Sj≤iCj * ét/Tjù + Bi ≤ t

 Sufficient scheduling condition with EDF
"i, 1≤i≤n, Sj≤iCj/Tj + Bi/Ti ≤ 1

Laurent Pautet

Sharing resources
Priority Inheritance Protocol

 Problems
 Preemptive scheduling with fixed priority can lead to

a situation of priority inversion
 A low priority task blocks a high priority task for a

time longer than that of its mutual exclusion
 Difficult to estimate upper bound of blocking time

 Solution
 Priority inheritance raises the priority of the blocking

task to the blocked one
 Once the semaphore is released, the blocking task

returns to its initial priority

Laurent Pautet

Priority Inheritance Protocol
Blocking time longer than the expected one

With PIP
BT = 2u
Max BT = 4u

Without PIP
BT = 6u
Max BT = 12

t1

t2

t3

t1

t2

t3

Compute the maximum blocking time (BT) on this example

Laurent Pautet

Priority Inheritance Protocol
Benefits and Drawbacks

 Benefits
 Reduce blocking time

 Remaining drawbacks
 N resources : N blocking times & priority elevations
 Deadlocks are possible

 Properties
 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 A low task can indirectly block a task without

sharing a resource because of priority inheritance

Priority Inheritance Protocol
Blocking Time Analysis

 t3 can be actually blocked by the 3 resources
 Although t3 uses only R3, it can be indirectly blocked

by t4 or t5 when they block t1 or t2 using R1 et R2
because of priority inheritance (t4 inherits t1 priority)

 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 The worst case for t3 occurs when

 t4 locks R1, inherits from t1

 t5 locks R2, inherits from t2

 B3 = max(3+2,3+1,1+2,1+1) = 5

Laurent Pautet

R1 R2 R3 B
t1 2 . . 3
t2 . 1 . 5
t3 . . 2 5
t4 3 3 1 2
t5 1 2 1 0

Examples of indirect blocking

Laurent Pautet

t1 t4

t2 t5

t3

t3

t4

t3

t5

Laurent Pautet

Sharing resources
Priority Ceiling Protocol

 Problems
 N resources : N blocking times & priority

elevations
 Deadlocks are possible

 Solution (fixed priorities)
 The (static) priority ceiling represents the

maximum priority of tasks using the resource
 A task gets access to a resource when its priority

is strictly greater than all the priority ceiling of the
resources in use

 The blocking task inherits the priority of the
highest priority blocked task

Laurent Pautet

Priority Ceiling Protocol
Chained blocking

With PCP
BT = 2u
Max BT = 6u

Without PCP
BT = 6u
Max BT = 10u

t1

t2

t3

t2

t3

Compute the maximum blocking time (BT) on this example

Laurent Pautet

Priority Ceiling Protocol
Deadlock

t1

t2

t1

t2

With PCP

Without PCP

Laurent Pautet

Priority Ceiling Protocol
Benefits and drawbacks

 Benefits
 No chained blocking time
 The task is blocked at most once whatever the

number of shared resources
 No deadlock

 Remaing drawbacks
 Implementation complexity
 Multiple priority elevations

Priority Ceiling Protocol
Analysis of blocking time

 A low priority task blocks a priority task only once
 A high priority task blocks on a resource only once
 A low task can indirectly block a task without

sharing a resource because of priority inheritance
 With PCP, a task can be blocked by a lower priority

task only once and on a single resource

Laurent Pautet

R1 R2 R3 B
t1 2 . . 3
t2 . 1 . 3
t3 . . 2 3
t4 3 3 1 2
t5 1 2 1 0

Laurent Pautet

Sharing resources
Immediate Priority Ceiling Protocol

 Problems
 PCP implementation complexity
 PCP multiple priority changes

 Solution
 The (static) priority ceiling represents the

maximum priority of the tasks that use it
 When a task gets access to a resource, it inherits

(immediately) a priority strictly greater than the
priority ceiling

Laurent Pautet

Immediate Priority Ceiling Protocol
Deadlock

t1

t2

t1

t2

t1

t2

PIP

PCP

IPCP

Laurent Pautet

Immediate Priority Ceiling Protocol
Benefits and drawbacks

 Benefits
 Less complex than PCP

 Drawbacks
 IPCP (and PCP) relies on fixed priority scheduling

Laurent Pautet

Conclusions

 To satisfy the time constraints in hard real
time systems, the first concern must be the
predetermination of the system behavior.

 Offline static scheduling is most often the
only practical way to achieve predictable
behavior in a complex system

Laurent Pautet

Lectures

 G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications Kluwer academic Publishers, Boston, 1997.

 C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-time
Environment. Journal of the ACM, 20(1):46--61, Jan. 1973.

 L. Sha, R. Rajkumar and J. Lehoczky, "Priority Inheritance Protocol": An Approach to real-
time synchronisation," IEEE Transaction on Computers 39(9), pp.1175-1185, 1993.

 Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency control protocol for
real-time systems. Journal of Real-Time Systems, 2:325--346, 1990.

 T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems, 3(1):67--99,
March 1991.

 B. Sprunt, L. Sha, and J. P. Lehoczky, "Aperiodic scheduling for hard real-time system". The
Journal of Real-Time Systems, 1, pp. 27-60, 1989.

