
TD Real-Time Systems (version 7.1)

1 RM, EDF and LLF (uni-processor)
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T).

T1: (C = 1, T = 3)
T2: (C = 1, T = 4)
T3: (C = 2, T = 6)

For each of the RM, EDF and LLF scheduling policies on a uni-processor:
• Calculate U, the processor utilization factor, what can we conclude from it?
• Give the chronogram of the tasks. What comment can we make?
Reminder: n(2(1/n)-1) = 0,78 pour n = 3.

2 Response Time (uni-processor)
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T).
T1: (C = 25, T = 100)
T2: (C = 50, T = 200)
T3: (C = 100, T = 300)
Calculate their response time to determine if they are schedulable with RMS on a uni-processor.
Reminder: Ri(t) = Sj in hp(i) Cj*⎡t/Tj⎤ with hp (i) containing the tasks with higher priority than task i

3 Aperiodic Task Servers

3.1 T1 being a periodic task
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T).
T1: (C = 2, T = 10)
T2: (C = 4, T = 14)
T3: (C = 5, T = 14)
Demonstrate without doing the complete chronogram that the system is schedulable.

3.2 T1 being a deferred server
We now assumed that T1 is a deferred server. We introduce in the previous system A, an aperiodic
task characterized by a release time 28, a budget 6
Give the chronogram illustrating the scheduling of T1, T2, T3 and A from t = 25. Explain the issue et
the reasons.

3.3 T1 being a polling server
It is now assumed that T1 is a polling server. We introduce the same aperiodic task. Give the
chronogram and the response time of A.

3.4 T1 sporadic server
It is now assumed that T1 is a sporadic server. We introduce the same aperiodic task. Give the
chronogram and the response time of A.

4 Integrated Modular Avionic
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T). They run on a
partitioned ARINC 653 mono-processor platform.

Name Budget Period / Deadline
T1 1 3
T2 1 6
T3 2 6
T4 2 12

2020-10-13 2 Real-Time Systems

We want to apply preemptive Rate Monotonic scheduling. In case of tie, the lexicographical order is
used.

4.1 Question 1
Explain why the schedulability test cannot conclude on the schedulability of this task set. Calculate the
chronogram over the hyper-period.

4.2 Question 2
Tasks T1 and T3 have the same level of criticality A and T2 and T4 have the same level of criticality
B. We have to group the tasks by level of criticality to form partitions. We keep the previous
scheduling as it is. Define the Partition Windows to enforce the criticality requirements and calculate
the number of partition switches.

4.3 Question 3
We want to reduce this number of switches. Suggest another configuration of partition windows so as
to reduce the number of partition switches.

5 EDF and LLF in multi-processors systems (m cores)
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T).

T1 : (C=2*epsilon, T)
…
Tm : (C=2*epsilon, T)
Tm+1 : (C=T, T+epsilon)

5.1 Utilization factor
Calculate the utilization factor of the system when epsilon is small and T is large.

5.2 Global EDF
Apply Global EDF to this task set. What do we see?

5.3 Global LLF
Apply Global LLF to this set of tasks. What do we see?

5.4 Conclusions
What can we conclude from these examples?

6 Multi-processors partitioned scheduling (m cores)
Find a scheduling of identical synchronous periodic tasks (ready at t = 0) with implicit deadlines (D =
T) so that they are not schedulable in partitioned but schedulable in global.

7 Global and partitioned schedulers on 2 cores
Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T).

Name Budget Period/Deadline
T1 4 6
T2 7 12
T3 4 12
T4 10 24

2020-10-13 3 Real-Time Systems

7.1 Pfair
Is the task system schedulable using PFair? Produce the chronogram (split into subtasks).

7.2 Global-RM
Is the task system schedulable using Global-RM? Produce the chronogram.

7.3 Partitioned-RM
Is the task system schedulable using a partitioned architecture, each partition scheduling its tasks with
RM? Produce the chronogram.

8 Global vs partitioned scheduling
In this problem, we study the scheduling of a video surveillance application consisting of a set of tasks
described below.

• The Ta1 task takes care of the audio input device and manages the acquisition of audio
samples. Ta1 provides the inputs of the task Ta2 as an output.

• The Ta2 task manages the audio output device (speakers) and presents the audio stream on a
supervision console. Ta2 takes the outputs of Ta1 as input.

• The Tv1 and Tv2 tasks perform similar functions for the video stream.
An engineer has to validate the temporal behaviour of this task set. It is further assumed that these are
defined by the parameters below:

Task Budget Period

Ta1 5 10

Ta2 5 10

Tv1 10 20

Tv2 10 20

The deadlines are equal to the periods (tasks with implicit deadlines). The date of first activation of all
tasks is the same and is zero (synchronous tasks).

Assume a preemptive fixed priority scheduler having 100 priority levels (from 0 to 99, the priority
level 99 being the highest priority level).

8.1 Priorities to make tasks independent
The tasks are not independent (see description above). The task Ta2 (respectively Tv2) must be
activated on termination of the task Ta1 (respectively Tv1).

From Ta1 and Ta2 (respectively Tv1 and Tv2), which task must have the highest priority in order to
ensure the precedence constraints expressed above.

2020-10-13 4 Real-Time Systems

Once these constraints on priorities have been expressed, tasks Ta1 and Ta2 (resp. Tv1 and Tv2)
will be considered as independent. They are activated at the beginning of their period (ai=0) but
their assignment of priority must guarantee that the precedencies are respected.

8.2 Partitioned scheduling (independent tasks)
The execution platform consists of two identical processors. As a first approach, we want to apply a
partitioned scheduling: the tasks Ta1 and Ta2 are placed on a first processor and the other tasks on the
second. We use the properties on the priorities expressed in question 8.1. Calculate the scheduling
over the hyper-period. Is the system schedulable?

8.3 Global scheduling (independent tasks)
In a second approach, a preemptive global scheduling with static priority is used to execute these tasks
on the 2 processors, the allocation of priorities to tasks being to be determined. It is assumed that the
migration of tasks can take place at any time. In the following, it is assumed that this scheduling makes
it possible to correctly execute the set of tasks Ta1, Ta2, Tv1 and Tv2 while ensuring the properties
on the priorities expressed in question 4.1 in order to make these tasks independent.
Given the capabilities of Tv1 and Tv2 demonstrate that they necessarily consume a full processor over
the entire hyper-period.

8.4 Property on priorities of Tv1 and Ta1
Prove at time t = 0, Tv1 and Ta1 must have the 2 highest priorities for the system to run properly.

8.5 Property on priorities of Tv2 and Ta2
Prove that one must have priority (Tv2) < priority (Ta2) for the system to run correctly at t = 5.

8.6 Opposite property on priorities of Tv2 and Ta2
Prove that one must have priority (Tv2) > priority (Ta2) for the system to run correctly after t = 10.

8.7 Comparison of approaches on a particular scenario
For this particular scenario, which approach (global or partitioned) would you recommend?

9 MC/DC code coverage

We have the following code

F3(x, y, z) : if (((x==1) && (y==2)) || (z==3)) {F1(x, y, z) ;} ; F2(x, y, z) ;

9.1 2 tests
According to MC / DC, are the F3 (1, 2, 3) and F3 (2, 2, 3) tests redundant or complementary? Justify
your answer.

9.2 Logical table
Build the logical table.

10 CAN Bus
Recall the arbitration principles of the CAN bus. You detail the result of the simultaneous transmission
of messages on the bus by tasks with identifiers 4, 5, 6 and 7.

2020-10-13 5 Real-Time Systems

11 Multi-processors scheduling
In this exercise, we schedule on two processors the following system of periodic synchronous tasks
with implicit deadlines:

Task Budget Period
T1 1 4
T2 1 5
T3 18 20

Question 1. How does Global- EDF work? Is this system schedulable using Global-EDF?

Question 2. We increase the period of T1 from 4 to 5. Is this system schedulable using Global-EDF?
Comment on the results of the two questions?

12 Scheduling with blocking time
We want to execute on a mono-processor a set of tasks sharing 2 locks S1 and S2.

Let be the synchronous periodic tasks (ready at t = 0) with implicit deadlines (D = T). They run on a
partitioned ARINC 653 mono-processor platform. We want to apply a pre-emptive Earliest Deadline
First scheduling. We are studying the scheduling in the case of PIP-EDF and SRP-EDF
synchronization protocols. Determine the blocking times. Apply system scheduling tests in the
presence of blockages for EDF.

13 Energy-aware scheduling

In this exercise, we consider the following system of periodic synchronous tasks with implicit

deadlines running on a mono-core processor. The priority of tasks is pre-established (see below)
and the higher the priority value, the higher the task priority.

Tasks Budget
(HIE)

Budget
(LOE)

Period Priority

T1 4 5 10 3

T2 3 0 15 2

T3 4 5 15 1

T4 4 5 30 0

Our system is powered by a photovoltaic panel so that the system has to change behaviour when its
energy level is below a given threshold. When the energy level is above the threshold (HIgh-Energy

Name C T Execution code
T1 2 8 L(S1) ; Exec(1) ; U(S1) ; Exec(1) ;
T2 3 10 L(S1) ; Exec(1) ; U(S1) ; Exec(1) ; L(S2) ; Exec(1) ; U(S2)
T3 3 20 Exec(1) ; L(S2) ; Exec(1) ; U(S2) ; Exec(1) ;
T4 7 40 L(S1) ; Exec(3) ; U(S1) ; Exec(1) ; L(S2) ; Exec(3) ; U(S2)

2020-10-13 6 Real-Time Systems

mode), the system runs at normal processor frequency and the scheduler executes 4 tasks with the
allocated budgets given in the HIE column. When the energy level reaches the threshold (LOw-Energy
mode), the system will reduce the processor frequency by 25%. As a consequence, the WCET and the
task budget will increase and task T2 will no longer execute to compensate for the loss of computing
power. In this case, the scheduler executes only 3 tasks (T2 is no longer running) with the allocated
budget given in the LOE column.
To refine the system model, the scheduler will detect the frequency change when a task has exhausted
its budget without completing. For instance, when the scheduler detects that task T2 has not completed
after 3 units of execution, it will conclude that a frequency change happened, and will shift from
scheduling 4 tasks with HIE budgets to scheduling 3 tasks with LOE budgets without restarting the
tasks. Only task T2 will stop, while tasks T1, T3 and T4 are allowed to execute for one extra unit
(+25%).

13.1 Schedulabity in HIE and LOE modes (case 1)
In this question, no frequency change happens. Provide the timeline (chronogram) in HIE
mode (which includes T1, T2, T3 and T4 tasks) without changing frequency. Then provide
the timeline in LOE mode (which includes only T1, T3 and T4 tasks). In both cases, we
assume that all tasks execute for their maximum budget. Is the system schedulable in both
modes? Use the timelines given below if needed.

13.2 Frequency change (case 1)

In this question, a frequency change happens while executing task T2. After executing task
2 for 3 units, the scheduler detects that task T2 has not completed. We assume that all tasks
execute for their maximum budget. Provide the timeline when the frequency change is
detected at the end of task T2 because of the exceeded budget. Is the system schedulable in
this case?

13.3 Schedulabity in HIE and LOE modes (case 2)

We now assume task T2 is has priority 1 and task T3 has priority 2. In this question, no
frequency change happens. In both cases, we assume all tasks execute for their maximum
budget. Provide the timeline in HIE mode (which therefore includes T1, T2, T3 and T4
tasks) without changing frequency. Then provide the timeline in LOE mode (which
includes only T1, T3 and T4 tasks). Is the system schedulable in both modes?

2020-10-13 7 Real-Time Systems

13.4 Frequency change (case 2)

In this question, the frequency change happens while executing task T2. After executing
task 2 for 3 units, the scheduler detects that task T2 has not completed. We assume that all
tasks execute for their maximum budget. Provide the timeline when the frequency change
is detected at the end of task T2 because of the exceeded budget. Is the system schedulable
in this case?

SOLUTIONS

1 RM, EDF and LLF
U=1/3+1/4+2/6=11/12
The system can be scheduled by LLF and EDF because it checks the necessary and sufficient
condition U ≤ 1.
Nothing can be said for RMS because the sufficient condition is not verified because
U ³ n(2(1/n)-1) = 0,78 pour n = 3. On the other hand, the chronogram over hyper-period 12 shows that
the system is schedulable with RMS.

2 Response Time
We calculate by iteration the response time given by Ri(n+1) Sj≤iCj * éRi(n)/Tjù

for all tasks j of higher priority than task i. Knowing that Ri(0) = Ci. The final response time must be
less than the deadline.

R1(0) = 25, R1(1) = R1(0) = 25 or R1(1) < D1 : T1 respects its deadline with RMS.
R2(0) = 50, R2(1) = 25*é50/100ù + 50=75, R2(2) = R2(1) = 75, R2(1) < D2 : T2 respects its deadline.
R3(0) = 100, R3(1) = 25*é100/100ù + 50*é100/200ù + 100 = 175, R3(1) = 25*é175/100ù +
50*é175/200ù + 100 = 200, R3(1) = 25*é200/100ù + 50*é200/200ù + 100 = 200 R3(3) = R3(2) = 200,
R3(3) < D3 : T3 respects its deadline.

3 Aperiodic Task Servers

3.1 T1 being a periodic task
We calculate by iteration the response times to show that the system is schedulable. Note that we can
regroup T2 and T3 since they have the same period.

3.2 T1 being a deferred server
Task T3 misses its deadline at T = 42.

25 30 35 40 45 50

t1

t2

t3

3.3 T1 being a polling server
25 30 35 40 45 50

2020-10-13 8 Real-Time Systems

t1

t2

t3

3.4 T1 being sporadic server

25 30 35 40 45 50

t1

t2

t3

4 Integrated Modular Avionic
4.1 Question 1
U = 1 therefore with RMS we cannot conclude.

1 2 3 4 5 6 7 8 9 10 11 12

T1 T2 T3 T1 T3 T4 T1 T2 T3 T1 T3 T4

4.2 Question 2
There are 8 partition switches (including the one occurring a the hyper period)

P1 P2 P1 P1 P1 P2 P1 P2 P1 P1 P1 P2

T1 T2 T3 T1 T3 T4 T1 T2 T3 T1 T3 T4

4.3 Question 3
We group tasks T1 and T3 then T2 and T4. There are 3 partition switches.

P1 P1 P1 P1 P2 P2 P2 P2 P1 P1 P1 P1

T1 T3 T3 T1 T2 T4 T4 T2 T1 T1 T3 T3

5 EDF and LLF in multi-processes systems (m cores)

5.1 Utilization factor
U = (2m/P)*epsilon + P/P+epsilon so U is approximately 1. Much less than m.

5.2 Global-EDF
With Global-EDF, T1 to Tm start on C1 to Cm cores. At t = 2 * epsilon, T1 to Tm end and Tm + 1 can
run, ends at 2 * epsilon + P and miss its deadline.

5.3 Global-LLF
With Global-LLF, Tm + 1 starts on C1 and T1 to Tm-1 starts on the other cores then when T1 ends on
C2, Tm starts on C2 and all the tasks respect their deadline.

2020-10-13 9 Real-Time Systems

5.4 Conclusions
On the one hand, even if U = 1 Global-EDF can fail in multi-core systems (U=m) ! On the other hand,
Global-LLF seems to dominate Global-EDF (proved in the littérature).

6 Multi-processors partitioned scheduling (m cores)
The idea is to ensure that the use of two (identical) tasks does not fit on one core (U> 1) and that the
sum of the utilization factor fits on m cores. To do this, we choose m + 1 tasks of C = (T + epsilon) / 2.
2U = (T + epsilon) / T> 1. But (m + 1) (T + epsilon) / 2T <= m
if (T + epsilon) <= m (T-epsilon), so as soon as 2 <= m.

7 Global and partitioned schedulers on 2 cores

7.1 PFair
For each task i, we create Ci sub-tasks (a unit j for each budget unit) such that the activation (resp the
deadline) is ⎣ (j-1) / Ui⎦ (resp ⎡j / Ui⎤) .
For T1, intervals are (0 ; 2), (1 ; 3), (3 ; 5), (4 ; 6), (6 ; 8), (7 ; 9), (9 ; 11), (10 ; 12) (U = 4/6)
For T2, intervals are (0 ; 2), (1 ; 4), (3 ; 6), (5 ; 7), (6 ; 9) (8.11), (10.12) (U = 7 / 12)
For T3, intervals are (0 ; 3), (3 ; 6), (6 ; 9), (9 ; 12) (U = 4/12)
For T4, intervals are (0 ; 3), (2 ; 5), (4 ; 8), (7 ; 10), (9 ; 12), (12 ; 15), (14 ; 17), (16 ; 20), (19 ; 22)
(21 ; 24). (U = 10/24)

 4 9 14 19

t1

t2

t3

t4

7.2 Global-RM

 4 9 14 19 24

t1

t2

t3

t4

T4’s deadline miss at t=24.

7.3 Partitioned-RM
The global utilisation factor being 2 for 2 cores available, each core must support the execution of
tasks with a utilisation factor of 1. The only solution is to put T2 (7/12) with T4 (10/24) and therefore
T1 (4/6) with T3 (4/12). We quickly calculate that the response time of T3 is 12 less than its deadline
and that of T4 is 24.

2020-10-13 10 Real-Time Systems

8 Global vs partitioned scheduling

8.1 Priorities to make tasks independent
Tv1 (Ta1) have to start first so it has to be assigned a priority higher than Tv2 (Ta2).

8.2 Partitioned scheduling (independent tasks)
The hyper-period is 20 and as Ta1 (Tv1) has a highest priority compared to Ta2 (Tv2) it is first
executed on core C1 (C2) during [0,5[([0,10[) and then Ta2 (Tv2) is executed, the overall system is
schedulable.

8.3 Global scheduling (independent tasks)
U=2 and we have 2 cores.

8.4 Property on priorities of Tv1 and Ta1
At time t = 0, all tasks are ready (independent tasks). To enforce the right precedencies, the scheduler
has to select Tv1 and Ta1 so they must have the 2 highest priorities.

8.5 Property on priorities of Tv2 and Ta2
At time t = 5, tasks Tv1, Ta2 and Tv2 are ready. Tv1 has a highest priority and is scheduled on C1. We
cannot schedule Tv2 on C2 once Ta1 has completed for two reasons: Ta2 would miss its deadline and
Tv2 would start before the completion of Tv1. Thus, priority (Ta2) > priority (Tv2).

8.6 Opposite property on priorities of Tv2 and Ta2
At time t = 10, tasks Ta1, Ta2 and Tv2 are ready. Ta1 has a highest priority and is scheduled on C1.
We cannot schedule Ta2 on C2 once Tv1 has completed for two reasons: Tv2 would miss its deadline
and Ta2 would start before the completion of Ta1.Thus, priority (Tv2) > priority (Ta2).

8.7 Comparison of approaches on a particular scenario
We prove that priority (Ta2) > priority (Tv2) and priority (Tv2) > priority (Ta2). Thus, we cannot
schedule this system with a global scheduler with static priority.

9 MC/DC code coverage

9.1 Two tests
They are redundant because like z == 3 one varies x and y without modifying the decision. The final
test is still true.

9.2 Logical table
x==1 y==2 z==3 decision

F V V V
F V F F
V V F V
V F F F

10 CAN Bus
The bus starts transmitting the identifier over the bus, bit by bit. Bit 1 is recessive (the emitter loses in
a conflict that would involve at least one node sending a bit 0). In the example, we will detail, bit by

2020-10-13 11 Real-Time Systems

bit, the decisions that the nodes take to determine whether they are emitters or receivers (4 = 1000, 5 =
1001, 6 = 1010, 7 = 1011). Ultimately, nodes with weaker identifiers have the highest priority.

11 Multi-processors scheduling

Question 1: By doing the chronogram over the hyper-period of 20, we find that the system is
schedulable.

Question 2: By doing the chronogram over the hyper-period of 20, we find that the system is not
schedulable. We observe a scheduling anomaly.

12 Scheduling with blocking time
See example in slides.

