
Critical Embedded Real-Time Systems
Systèmes Temps Réel Embarqués Critiques

STREC - WCET - Cache Analysis

Florian Brandner
Télécom Paris



x
Outline



Sub-Module Outline

1. The While Language
2. Basic Data-Flow Analysis
3. Worst-Case Execution Time Analysis
4. Static Cache Analysis

• Recap Caches (3Cs, Associativity, Replacement Policy)
• Hit & Miss Classification (May vs. Must Analysis)
• Classification & IPET
• Persistence

3/1



x
Cache Organization



Cache Principles

What is a cache?
• A relatively small and fast memory
• Connected to a larger and slower cache/memory

• Stores data (or instructions) currently used
• Implemented as a kind of dictionary

• Cache hit:
Data requested by the processor is in the cache
=⇒ Immediate response

• Cache miss:
Data requested by the processor is not in the cache
=⇒ Data is fetched from larger cache/memory
=⇒ Delayed response

5/1



Cache Misses

Sources of misses can be grouped in three categories:
• Compulsory misses:

Occur when new data is accessed that was never referenced before

• Capacity misses:
Occur due to the limited size of the cache, regardless of the cache’s internal
design
(i.e., the amount of data accessed is larger than the cache)

• Conflict misses:
Are due to the internal organization of the cache
(i.e., could theoretically be avoided by an ideal cache design)

6/1



Cache Design
A cache can be seen as a kind of dictionary with k entries:
• Each entry is associated with the following information

• Valid flag:
Flag indicating whether the data is valid

• Tag:
The address of the data held by the entry

• Data:
The data held by the entry

• Entries are stored in a memory

• Cache accesses to address a:
1. Check whether an entry’s tag matches a
2. Check whether that entry is valid
3. Yes? =⇒ hit
4. No? =⇒ miss

7/1



Set-Associative Cache
Organize cache in lines to reduce conflicts:
• The cache contains k entries
• Each line contains a set of s entries
• Each entry holds a block of b bytes
• Address a maps to a line:

(a÷ b) mod (k ÷ s)

• Cache look-up:
• Read line (a÷ b) mod (k ÷ s) from cache
• Compare the tags of the line’s s entries with a
• Select the matching entry (if one exists)
• Check the entry’s valid flag

8/1



Set-Associative Cache (2)

Example: A 4-way set-associative cache.
9/1



Replacement Policy
Which entry should be used on a cache miss?1

• Several policies are possible

• First-In, First-Out:
• Simple to implement
• Replace the entry that was loaded first
• aka: Round-Robin

• Least-Recently Used (LRU):
• Widely used strategy in practice (rather expensive through)
• Replace block that was not used the longest
• Preserve blocks that have recently been used

(cf. temporal locality)

• . . .

1Especially once all valid flags are set.
10/1



Least-Recently Used
Implemented as an age counter for each entry:
• Counters are updated on each access to an address a
• Counters are in the range [0,1, . . . , s − 1]

• Hit:
1. If the age of a’s entry is 0: done
2. Otherwise: set the age of that entry to 0
3. Increment the age of the line’s other entries by 1

• Miss:
1. Fetch data from backing store
2. Select entry with age s − 1
3. Set the counter of that entry to 0
4. Set the valid flag, the tag, and the data accordingly
5. Increment the age of the line’s other entries by 1

11/1



Example: LRU Replacement

Cache state when performing memory accesses:
• Assume the following set-associative cache:

• Block size: b = 20 = 1 byte
• Entries: k = 23 = 8
• Associativity: s = 21 = 2
• Address Width: 5 bits

• The cache is initially empty (i.e., all valid flags are 0)

• Accessed addresses:
22, 26, 22, 26, 16, 3, 16, 18, 26

12/1



Example: LRU Replacement (1)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 0 – – – 0 – – –
1 0 – – – 0 – – –
2 0 – – – 0 – – –
3 0 – – – 0 – – –

Initially: Cache is entirely empty.
Miss:
Miss:

13/1



Example: LRU Replacement (2)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 0 – – – 0 – – –
1 0 – – – 0 – – –
2 1 0 1012 M(101102) 0 – – –
3 0 – – – 0 – – –

Miss: Compulsory miss for address 22.
Miss:
Miss:

14/1



Example: LRU Replacement (3)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 0 – – – 0 – – –
1 0 – – – 0 – – –
2 1 1 1012 M(101102) 1 0 1102 M(110102)
3 0 – – – 0 – – –

Miss: Compulsory miss for address 26.
(same line, but no conflict)

Miss:

15/1



Example: LRU Replacement (4)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 1 0 1002 M(100002) 0 – – –
1 0 – – – 0 – – –
2 1 1 1012 M(101102) 1 0 1102 M(110102)
3 0 – – – 0 – – –

Hits: Cache hits for addresses 22 and 26.
(intermittently switch age)

Miss: Compulsory miss for address 16.

16/1



Example: LRU Replacement (5)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 1 0 1002 M(100002) 0 – – –
1 0 – – – 0 – – –
2 1 1 1012 M(101102) 1 0 1102 M(110102)
3 1 0 0002 M(000112) 0 – – –

Miss: Compulsory miss for address 3.
Miss:
Miss:

17/1



Example: LRU Replacement (6)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 1 0 1002 M(100002) 0 – – –
1 0 – – – 0 – – –
2 1 0 1002 M(100102) 1 1 1102 M(110102)
3 1 0 0002 M(000112) 0 – – –

Hit: Cache hit for address 16.
Miss: Compulsory miss for address 18.

(conflict with addresses 22)

18/1



Example: LRU Replacement (7)

Set 0 Set 1
Index Valid Age Tag Data Valid Age Tag Data

0 1 0 1002 M(100002) 0 – – –
1 0 – – – 0 – – –
2 1 1 1002 M(100102) 1 0 1102 M(110102)
3 1 0 0002 M(000112) 0 – – –

Hit: Cache hit for address 26.
Miss:
Miss:

19/1



Write Policy (Hit)
Determines how memory stores are handled:
• Two basic options for a write hit

• Write-through:
• Write data into the cache and to backing store
• Long delay (waiting for slow higher-level caches)

• Write-back:
• Write data only to the cache
• Data is incoherent between cache and backing store
• Backing store updated once data is evicted from cache
• Implementation:

Add an additional dirty bit to each cache entry

• What happens on a write miss?

20/1



Write Policy (Miss)

Should data be loaded to the cache on a write miss?
• Write-allocate:

• First load cache block from backing store
• Then use same strategy as for write hits

• Write-no-allocate:
• Does not load from backing store
• Write immediately to backing store

• Both can be combined with write-trough/-back, but usually
• Write-through is combined with write-no-allocate
• Write-back is combined with write-allocate

21/1



This Course

From now on we will assume:
• Separate data and instruction caches

• LRU replacement policy

• Write-through with write-no-allocate

22/1



x
Cache Analysis



Cache Analysis

Compute the time required for cache misses:
• Analyze cache states before each memory access

• Is the accessed data in the cache?
• How often do cache hits occur?
• How often do the expensive cache misses occur?

• Problems:
• Access addresses need to be known precisely
• Behavior of accesses in loops changes over time

24/1



Example: Cache Analysis Join

Combining two cache states (addresses)∗

0x100 0x200
0x103 ??

0x100 0x200
0x103 0x105

0x100 0x200
0x103 0x107

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement

25/1



Example: Cache Analysis

Initial cache state (addresses)∗

0x100 0x200
0x103 ??

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement26/1



Example: Cache Analysis

Initial cache state (addresses)∗

0x100 0x200
0x103 ??

lw [0x100]
0x100 0x200
0x103 ??

Classified as hit

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement26/1



Example: Cache Analysis

Initial cache state (addresses)∗

0x100 0x200
0x103 ??

lw [0x100]
0x100 0x200
0x103 ??

Classified as hit

lw [0x300]
0x300 0x100
0x103 ??

Classified as miss

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement26/1



Example: Cache Analysis

Initial cache state (addresses)∗

0x100 0x200
0x103 ??

lw [0x100]
0x100 0x200
0x103 ??

Classified as hit

lw [0x300]
0x300 0x100
0x103 ??

Classified as miss

lw [0x105]
0x100 0x200
0x105 ??

Classification unclear

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement26/1



Example: Cache Analysis

Initial cache state (addresses)∗

0x100 0x200
0x103 ??

lw [0x100]
0x100 0x200
0x103 ??

Classified as hit

lw [0x300]
0x300 0x100
0x103 ??

Classified as miss

lw [0x105]
0x100 0x200
0x105 ??

Classification unclear

lw [??]
?? ??
?? ??

Classification unclear

∗Cache configuration
2-way set-associative, 1 word blocks, 2 cache lines, LRU replacement26/1



x
Cache Hit & Miss Classification



Basic Idea

For each memory/cache access:2

1. Determine the set of memory blocks potentially accessed
• For instance: range analysis (last lecture)

2. Determine the age of each memory block
• Topic of today’s lecture

3. Use the minimum/maximum age to classify hits/misses
• Topic of today’s lecture

2Recall: assume a set-associative cache with LRU

28/1



Memory Blocks

Abstraction used during the analysis to track the cache state:
• Address range in memory corresponding to a cache block
• Aligned with the cache block size
• Matches the size of a cache block (b from above)

• Notations:
• mbl(i) denotes the set of memory blocks of cache line l , potentially accessed by

instruction i
• This set might be empty

(e.g., instructions not accessing memory, such as addi on MIPS)

29/1



Age

Associate each memory block with an age counter:
• Counter range: [0,1, . . . , s] (s entries per set)

• Difference with real cache:
• Track age of all memory blocks not just those in the cache
• Memory blocks that are not in the cache have age s

(compare with counter range of actual cache)

• Notations:
• age(u) denotes the age of memory block u.

30/1



Access Classification

Classify each memory/cache access into a category:
• Always Hit (AH):

The age of all potentially accessed memory blocks must be smaller than s.

• Always Miss (AM):
The age of any potentially accessed memory blocks may never be smaller
than s.

• Not classified (NC):
None of the above applies.

31/1



Example: Age-Based Cache Analysis

Computing the age of cache block x:

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

32/1



Example: Age-Based Cache Analysis

Computing the age of cache block x:

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

32/1



Example: Age-Based Cache Analysis

Computing the age of cache block x:

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

32/1



Example: Age-Based Cache Analysis

Computing the age of cache block x:

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

32/1



Example: Age-Based Cache Analysis

Computing the age of cache block x:

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

32/1



Groupe Exercise Age-Based Cache Analysis

What is the classification of the last access to x?
• What can be said about the age of the memory block?
• Hint: recall the words may and must in the category definitions

lw [x]

lw [y]

lw [z] add

lw [x]

age(x) = 2

age(x) = 0 (miss)

age(x) = 0

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 1

age(x) = 2

age(x) =??

33/1



Analysis Problems

The above classification gives rise to two analysis problems
• Must analysis: (pessimist)

Compute maximum age of memory blocks, i.e., ages appearing in any real execution must be
equal or smaller to the computed age.

• May analysis: (optimist)
Compute minimum age of memory blocks, i.e., there may exist a real execution with an age as
low as the computed age.

34/1



Must Analysis

Data-flow analysis computes maximum age of memory blocks:
• Domain:

• CS = MBl × {0,1, . . . , s}
• MBl denotes the set of memory blocks of a cache line l
• s denotes the number of cache sets

• Notations:
• age(c,u) gives the age of memory block u for cache state c
• Only memory blocks in the cache will be shown

(i.e., only those with an age smaller than s)

35/1



Must Analysis: Join Operator (tMUST )

Select the maximum age for each memory block from cache states c1, c2 ∈ CS:

c1 tMUST c2 = {(u,a)|∃(u,a1) ∈ c1, (u,a2) ∈ c2 : a = max(a1,a2)}

36/1



Must Analysis: Transfer Function (1)

Lets consider a single memory block for now:
• Assume a state c ∈ CS and a memory block u ∈ MBl

• The cache state after a memory load is then given by:

updateMUST (c,u) = {(v ,a)|v ∈ MBl : a = must_age(c,u, v)}

must_age(c,u, v) =


0 , if u = v
age(c, v) , if age(c, v) ≥ age(c,u)
age(c, v) + 1 , if age(c, v) < age(c,u)

• Memory stores do not impact the cache state (write-through,
write-no-allocate)

37/1



Must Analysis: Transfer Function (2)

The transfer function for cache state c and instruction i then is:

tMUST (c, i) =


c , if mbl(i) = ∅
updateMUST (c,u) , if mbl(i) = {u}
error , otherwise (not yet handled)

38/1



Example: Must Cache Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 2), (y, 1), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

39/1



Example: Must Cache Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 2), (y, 1), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

39/1



Example: Must Cache Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 2), (y, 1), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

39/1



Example: Must Cache Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 2), (y, 1), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

39/1



Example: Must Cache Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 2), (y, 1), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

39/1



Group Exercise: Must Cache Analysis

What if the accessed memory blocks are not precisely know?
• Assume that the second load might either access y or v

(but of course never both)

• Is information regarding other memory blocks lost?

lw [x]

lw [y|v]

lw [z] add

lw [x]

{}

{(x, 0)}

{(x, 0)}

{(x, 1)}
{(y, 0), (x, 1)} tMUST {(v, 0), (x, 1)}

{(x, 1)}

{(x, 1)}

{(x, 1)}

{(z, 0), (x, 2)}

{(x, 2)}

{(x, 0), (y, 2)}

40/1



Representing Uncertain Accesses

• Can be seen as a form of control-flow decision
• Simply handle both cases separately
• Then apply the join operator

• Example:

lw [x]

lw [y] lw [v]

lw [z] add

lw [x]

41/1



Must Analysis: Transfer Function (3)

The transfer function for cache state c and instruction i then is:

tMUST (c, i) =


c , if mbl(i) = ∅⊔

MUST
u∈mbl (i)

updateMUST (c,u) , otherwise

42/1



Example: Uncertain Accesses

lw [x]

lw [y|v]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)} tMUST {(x, 1), (v, 0), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 2), (y, 2), (z, 0)}

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

43/1



Example: Uncertain Accesses

lw [x]

lw [y|v]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)} tMUST {(x, 1), (v, 0), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 2), (y, 2), (z, 0)}

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

43/1



Example: Uncertain Accesses

lw [x]

lw [y|v]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)} tMUST {(x, 1), (v, 0), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 2), (y, 2), (z, 0)}

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

43/1



Example: Uncertain Accesses

lw [x]

lw [y|v]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)} tMUST {(x, 1), (v, 0), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 2), (y, 2), (z, 0)}

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

43/1



Example: Uncertain Accesses

lw [x]

lw [y|v]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)} tMUST {(x, 1), (v, 0), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 1), (y, 2), (z, 2)}

{(x, 1), (y, 2), (z, 2)}
{(x, 2), (y, 2), (z, 0)}

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

43/1



May Analysis

Similar data-flow analysis as the Must analysis before:
• Domain: (same as for Must)

• CS = MBl × {0,1, . . . , s}
• MBl denotes the set of memory blocks of cache line l
• s denotes the number of cache sets

• Join Operator:
For any c1, c2 ∈ CS the join operator is given by:

c1 tMAY c2 = {(u,a)|∃(u,a1) ∈ c1, (u,a2) ∈ c2 : a = min(a1,a2)}

44/1



May Analysis: Transfer Function

Again, first consider a single memory block:
• Assume a state c ∈ CS and a memory block u ∈ MBl

• The cache state after a memory load is then given by:

updateMAY (c,u) = {(v ,a)|v ∈ MBl : a = may_age(c,u, v)}

may_age(c,u, v) =


0 , if u = v
age(c, v) , if age(c, v) > age(c,u)
age(c, v) + 1 , if age(c, v) ≤ age(c,u)∧

age(c, v) < s
s , otherwise

• Memory stores do not impact the cache state
(as before, write-through, write-no-allocate)
• The actual transfer function is similar to the Must analysis

45/1



Group Exercise: May versus Must Analysis

The age functions of the May and Must analyses are similar:
• Try to explain the differences
• Hint: Recall that the Must analysis provides a maximum and the May analysis

a minimum age!

must_age(c,u, v) =


0 , if u = v
age(c, v) , if age(c, v)≥ age(c,u)
age(c, v) + 1 , if age(c, v)< age(c,u)

may_age(c,u, v) =


0 , if u = v
age(c, v) , if age(c, v)> age(c,u)
age(c, v) + 1 , if age(c, v)≤ age(c,u)∧

age(c, v) < s
s , otherwise

46/1



May versus Must Analysis

Must analysis:
• age(c, v) represents the maximum age, i.e., the actual age might be smaller.
• Due to age(c, v)≥ age(c,u), the access to u cannot increase the age of v .

age(cs, v) = 2: age(cs, u) = 1:≥

Case 1: age(v) = 2: v age(u) = 1: u age(v) = 2: u v=⇒

Case 2: age(v) = 0: v age(u) = 1: u age(v) = 2: u v=⇒

• Similar argument when age(c, v)< age(c,u).

47/1



May versus Must Analysis (2)

May analysis:
• age(c, v) represents the minimum age, i.e., the actual age might be larger.
• Due to age(c, v)>age(c,u) the access to u thus cannot increase the age of v

age(cs, v) = 2: age(cs, u) = 1:>

Case 1: age(v) = 2: v age(u) = 1: u age(v) = 2: u v=⇒

Case 2: age(v) = 2: v age(u) = 3: u age(v) = 3: u v=⇒

• Similar argument when age(c, v)≤ age(c,u)
(attention age(c, v) might become too large here)

48/1



Example: May Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 1), (y, 0), (z, 0)}
{(x, 0), (y, 1), (z, 1)}

49/1



Example: May Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 1), (y, 0), (z, 0)}
{(x, 0), (y, 1), (z, 1)}

49/1



Example: May Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 1), (y, 0), (z, 0)}
{(x, 0), (y, 1), (z, 1)}

49/1



Example: May Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 1), (y, 0), (z, 0)}
{(x, 0), (y, 1), (z, 1)}

49/1



Example: May Analysis

lw [x]

lw [y]

lw [z] add

lw [x]

{(x, 2), (y, 2), (z, 2)}
{(x, 0), (y, 2), (z, 2)}

{(x, 0), (y, 2), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 1), (y, 0), (z, 2)}

{(x, 1), (y, 0), (z, 2)}
{(x, 2), (y, 1), (z, 0)}

{(x, 1), (y, 0), (z, 0)}
{(x, 0), (y, 1), (z, 1)}

49/1



Final Classification

Classification derived from May/Must analyses:
• Always Hit (AH):

Must analysis age of memory blocks in mbl(i) has to be lower than s.

• Always Miss (AM):
May analysis age of memory blocks in mbl(i) has to be equal to s.

• Not classified (NC):
None of the above applies.

50/1



Integration with IPET

Access classifications are easy to integrate into IPET
• Always Hit (AH):

Usually does not require additional costs.
• Always Miss (AM):

Add miss costs to the weight of the instruction’s basic block
• Not classified (NC):

Often considered as expensive as a miss.3

3This is only safe on architectures without timing anomalies (out of scope of this course – see
SE201 at Télécom ParisTech to get an idea)

51/1



x
Persistence



Accesses in Loops

Behavior of realistic programs:
• Often repeatedly access the same data in loops

• Observation:
• First iteration: cache miss (compulsory miss)
• Other iterations: often hits in cache

• The executed code itself exhibits typically this behavior (instruction cache)

• Problem:
This is cannot be handled by simple hit/miss classification.

53/1



Persistence

Introduce the notion of persistence:
• Data that remains in the cache once loaded
• Typically with regard to a scope

(e.g., a loop, a function, . . . )

• New classification:
• First Miss
• Accounting for one miss each time the scope is entered

54/1



Persistence Analysis (Idea)

Determine persistent memory accesses within a scope:
• Various possible approaches

• Combine loop peeling with Must analysis
• Bound set of conflicting accesses
• . . .

• Typically focus on loops
• Here in particular loop nests

55/1



Summary

• Caches hide long memory access latencies
• Considerably improve average-case execution time
• Need to be considered during WCET analysis

• Cache design
• Organized in sets of fixed-sized cache blocks
• Replacement policy (Least Recently Used)
• Write strategy (Write-through, no-allocation)

• Cache analysis
• Classify memory accesses (Always Hit/Miss, Not Classified)
• Must analysis: cache blocks that must be in the cache
• May analysis: cache blocks that may be in the cache

56/1


